
Angela Slitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2668844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical new insights into the binding of poly- and perfluoroalkyl substances (PFAS) to albumin protein. Chemosphere, 2022, 287, 131979.	8.2	30
2	Per- and polyfluoroalkyl substances (PFAS) augment adipogenesis and shift the proteome in murine 3T3-L1 adipocytes. Toxicology, 2022, 465, 153044.	4.2	13
3	Replacement per- and polyfluoroalkyl substances (PFAS) are potent modulators of lipogenic and drug metabolizing gene expression signatures in primary human hepatocytes. Toxicology and Applied Pharmacology, 2022, 442, 115991.	2.8	21
4	Challenges in Evaluating Safety and Efficacy in Drug Development for Rare Diseases: A Review for Pharmacists. Journal of Pharmacy Practice, 2021, 34, 472-479.	1.0	6
5	Dominant entropic binding of perfluoroalkyl substances (PFASs) to albumin protein revealed by 19F NMR. Chemosphere, 2021, 263, 128083.	8.2	24
6	Hepatoprotective and anti-inflammatory effects of a standardized pomegranate (<i>Punica) Tj ETQq0 0 0 rgBT /O Sciences and Nutrition, 2021, 72, 499-510.</i>	verlock 10 2.8) Tf 50 547 T 17
7	An â€~Omics Approach to Unraveling the Paradoxical Effect of Diet on Perfluorooctanesulfonic Acid (PFOS) and Perfluorononanoic Acid (PFNA)-Induced Hepatic Steatosis. Toxicological Sciences, 2021, 180, 277-294.	3.1	23
8	Cytochrome P450 Enzyme Inhibition and Herb-Drug Interaction Potential of Medicinal Plant Extracts Used for Management of Diabetes in Nigeria. European Journal of Drug Metabolism and Pharmacokinetics, 2021, 46, 437-450.	1.6	5
9	Perfluorooctanesulfonic Acid (PFOS) Thwarts the Beneficial Effects of Calorie Restriction and Metformin. Toxicological Sciences, 2021, 182, 82-95.	3.1	13
10	Increased toxicity and retention of perflourooctane sulfonate (PFOS) in humanized CYP2B6-Transgenic mice compared to Cyp2b-null mice is relieved by a high-fat diet (HFD). Food and Chemical Toxicology, 2021, 152, 112175.	3.6	12
11	Developmental Perfluorooctanesulfonic acid (PFOS) exposure as a potential risk factor for late-onset Alzheimer's disease in CD-1 mice and SH-SY5Y cells. NeuroToxicology, 2021, 86, 26-36.	3.0	14
12	The role of maternal high fat diet on mouse pup metabolic endpoints following perinatal PFAS and PFAS mixture exposure. Toxicology, 2021, 462, 152921.	4.2	16
13	Evaluation of Nigerian Medicinal Plants Extract on Human P-glycoprotein and Cytochrome P450 Enzyme Induction: Implications for Herb-drug Interaction. Current Drug Metabolism, 2021, 22, 1103-1113.	1.2	4
14	Perfluorooctanesulfonic Acid and Perfluorohexanesulfonic Acid Alter the Blood Lipidome and the Hepatic Proteome in a Murine Model of Diet-Induced Obesity. Toxicological Sciences, 2020, 178, 311-324.	3.1	35
15	Perfluorooctanesulfonic acid (PFOS) administration shifts the hepatic proteome and augments dietary outcomes related to hepatic steatosis in mice. Toxicology and Applied Pharmacology, 2020, 408, 115250.	2.8	31
16	Inhibitory Effect of Cannabidiol on the Activation of NLRP3 Inflammasome Is Associated with Its Modulation of the P2X7 Receptor in Human Monocytes. Journal of Natural Products, 2020, 83, 2025-2029.	3.0	45
17	2,2′,4,4′,5â€Pentabromodiphenyl ether induces lipid accumulation throughout differentiation in 3T3â€L1 ar human preadipocytes in vitro. Journal of Biochemical and Molecular Toxicology, 2020, 34, e22485.	nd 3.0	6
18	Phospholipid Levels Predict the Tissue Distribution of Poly- and Perfluoroalkyl Substances in a Marine Mammal. Environmental Science and Technology Letters, 2019, 6, 119-125.	8.7	84

ANGELA SLITT

#	Article	IF	CITATIONS
19	Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation <i>in vitro</i> . Nutritional Neuroscience, 2019, 22, 185-195.	3.1	65
20	Physiological Regulation of Drug Metabolism and Transport: Pregnancy, Microbiome, Inflammation, Infection, and Fasting. Drug Metabolism and Disposition, 2018, 46, 503-513.	3.3	40
21	Effects of a Standardized Phenolic-Enriched Maple Syrup Extract on β-Amyloid Aggregation, Neuroinflammation in Microglial and Neuronal Cells, and β-Amyloid Induced Neurotoxicity in Caenorhabditis elegans. Neurochemical Research, 2016, 41, 2836-2847.	3.3	32
22	PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway. Toxicology and Applied Pharmacology, 2016, 290, 21-30.	2.8	70
23	Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression. Drug Metabolism and Disposition, 2016, 44, 518-526.	3.3	10
24	Bisphenol A sulfonation is impaired in metabolic and liver disease. Toxicology and Applied Pharmacology, 2016, 292, 75-84.	2.8	21
25	Anti-Inflammatory Effects of Novel Standardized Solid Lipid Curcumin Formulations. Journal of Medicinal Food, 2015, 18, 786-792.	1.5	58
26	Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin-deficient mice. Obesity, 2015, 23, 335-344.	3.0	30
27	Caloric Restriction-Mediated Induction of Lipid Metabolism Gene Expression in Liver is Enhanced by Keap1-Knockdown. Pharmaceutical Research, 2013, 30, 2221-2231.	3.5	11
28	Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding. Free Radical Biology and Medicine, 2013, 61, 85-94.	2.9	49
29	Effect of Caloric Restriction and AMPK Activation on Hepatic Nuclear Receptor, Biotransformation Enzyme, and Transporter Expression in Lean and Obese Mice. Pharmaceutical Research, 2013, 30, 2232-2247.	3.5	9
30	Keap1-Knockdown Decreases Fasting-Induced Fatty Liver via Altered Lipid Metabolism and Decreased Fatty Acid Mobilization from Adipose Tissue. PLoS ONE, 2013, 8, e79841.	2.5	40
31	The traditional ayurvedic medicine, <scp><i>E</i></scp> <i>ugenia jambolana</i> (<scp>J</scp> amun) Tj ETQq1 32, 560-573.	1 0.78431 3.9	4 rgBT /Over 36
32	Severe diabetes and leptin resistance cause differential hepatic and renal transporter expression in mice. Comparative Hepatology, 2012, 11, 1.	0.9	27