Kanako Seki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/266799/publications.pdf

Version: 2024-02-01

153 papers 4,281 citations

30 h-index 59 g-index

157 all docs

157 docs citations

times ranked

157

2875 citing authors

#	Article	IF	CITATIONS
1	The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 2019, 215, 9.	8.1	332
2	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
3	Geospace exploration project ERG. Earth, Planets and Space, 2018, 70, .	2.5	201
4	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
5	Pulsating aurora from electron scattering by chorus waves. Nature, 2018, 554, 337-340.	27.8	149
6	The ERG Science Center. Earth, Planets and Space, 2018, 70, .	2.5	124
7	In-flight Performance and Initial Results of Plasma Energy Angle and Composition Experiment (PACE) onÂSELENE (Kaguya). Space Science Reviews, 2010, 154, 265-303.	8.1	123
8	The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 2015, 42, 9142-9148.	4.0	115
9	On Atmospheric Loss of Oxygen Ions from Earth Through Magnetospheric Processes. Science, 2001, 291, 1939-1941.	12.6	114
10	Terrestrial nitrogen and noble gases in lunar soils. Nature, 2005, 436, 655-659.	27.8	99
11	Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF. Journal of Geophysical Research, 2006, 111 , .	3.3	99
12	Statistical properties and possible supply mechanisms of tailward cold O+beams in the lobe/mantle regions. Journal of Geophysical Research, 1998, 103, 4477-4489.	3.3	95
13	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
14	Cold ions in the hot plasma sheet of Earth's magnetotail. Nature, 2003, 422, 589-592.	27.8	74
15	Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network. Earth, Planets and Space, 2017, 69, .	2.5	74
16	Relation between fine structure of energy spectra for pulsating aurora electrons and frequency spectra of whistler mode chorus waves. Journal of Geophysical Research: Space Physics, 2015, 120, 7728-7736.	2.4	73
17	Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	8.1	71
18	Global distribution and parameter dependences of gravity wave activity in the Martian upper thermosphere derived from MAVEN/NGIMS observations. Journal of Geophysical Research: Space Physics, 2017, 122, 2374-2397.	2.4	66

#	Article	lF	CITATIONS
19	Relativistic electron microbursts associated with whistler chorus rising tone elements: GEMSISâ€RBW simulations. Journal of Geophysical Research, 2012, 117, .	3.3	62
20	Coexistence of Earth-origin O+and solar wind-origin H+/He++in the distant magnetotail. Geophysical Research Letters, 1996, 23, 985-988.	4.0	60
21	Low-energy charged particle measurement by MAP-PACE onboard SELENE. Earth, Planets and Space, 2008, 60, 375-385.	2.5	53
22	Outer radiation belt boundary location relative to the magnetopause: Implications for magnetopause shadowing. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	46
23	Statistical Study of Relations Between the Induced Magnetosphere, Ion Composition, and Pressure Balance Boundaries Around Mars Based On MAVEN Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 9723-9737.	2.4	44
24	The BepiColombo mission: An outstanding tool for investigating the Hermean environment. Planetary and Space Science, 2010, 58, 40-60.	1.7	43
25	Sheared flows and smallâ€scale Alfvén wave generation in the auroral acceleration region. Geophysical Research Letters, 2009, 36, .	4.0	41
26	Statistical properties of low-frequency waves and ion beams in the plasma sheet boundary layer: Geotail observations. Journal of Geophysical Research, 2005, 110, .	3.3	40
27	MAVEN observations of partially developed Kelvinâ€Helmholtz vortices at Mars. Geophysical Research Letters, 2016, 43, 4763-4773.	4.0	38
28	Formation of a broad plasma turbulent layer by forward and inverse energy cascades of the Kelvin–Helmholtz instability. Journal of Geophysical Research, 2010, 115, .	3.3	37
29	A split in the outer radiation belt by magnetopause shadowing: Test particle simulations. Journal of Geophysical Research, 2010, 115 , .	3.3	37
30	Comparison of the Martian thermospheric density and temperature from IUVS/MAVEN data and general circulation modeling. Geophysical Research Letters, 2016, 43, 3095-3104.	4.0	34
31	The Energization and Radiation in Geospace (ERG) Project. Geophysical Monograph Series, 0, , 103-116.	0.1	33
32	Pre-flight Calibration and Near-Earth Commissioning Results of the Mercury Plasma Particle Experiment (MPPE) Onboard MMO (Mio). Space Science Reviews, 2021, 217, 1.	8.1	32
33	Quantification of tailward cold O+beams in the lobe/mantle regions with Geotail data: Constraints on polar O+outflows. Journal of Geophysical Research, 1998, 103, 29371-29381.	3.3	29
34	Heavy-ion flux enhancement in the vicinity of the Martian ionosphere during CIR passage: Mars Express ASPERA-3 observations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	29
35	Cross-scale coupling in the auroral acceleration region. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	29
36	Effects of a Weak Intrinsic Magnetic Field on Atmospheric Escape From Mars. Geophysical Research Letters, 2018, 45, 9336-9343.	4.0	29

#	Article	IF	Citations
37	Statistical Study of Heavy Ion Outflows From Mars Observed in the Martianâ€Induced Magnetotail by MAVEN. Journal of Geophysical Research: Space Physics, 2019, 124, 5482-5497.	2.4	29
38	Smallâ€scale auroral current sheet structuring. Journal of Geophysical Research, 2010, 115, .	3.3	28
39	On the origins of magnetic flux ropes in nearâ€Mars magnetotail current sheets. Geophysical Research Letters, 2017, 44, 7653-7662.	4.0	28
40	Formation of a sodium ring in Mercury's magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	27
41	Photoelectron flows in the polar wind during geomagnetically quiet periods. Journal of Geophysical Research, 2012, 117, .	3.3	26
42	SERENA: Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo. Space Science Reviews, 2021, 217, 11.	8.1	26
43	Significance of Wave-Particle Interaction Analyzer for direct measurements of nonlinear wave-particle interactions. Annales Geophysicae, 2013, 31, 503-512.	1.6	25
44	Coordinated EISCAT Svalbard radar and Reimei satellite observations of ion upflows and suprathermal ions. Journal of Geophysical Research, 2008, 113, .	3.3	24
45	Effects of an Intrinsic Magnetic Field on Ion Loss From Ancient Mars Based on Multispecies MHD Simulations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA026945.	2.4	24
46	Electron dynamics during substorm dipolarization in Mercury's magnetosphere. Annales Geophysicae, 2005, 23, 3389-3398.	1.6	23
47	Motion of aurorae. Geophysical Research Letters, 2010, 37, .	4.0	23
48	Relativistic electron flux forecast at geostationary orbit using Kalman filter based on multivariate autoregressive model. Space Weather, 2013, 11, 79-89.	3.7	22
49	Formation processes of flux ropes downstream from Martian crustal magnetic fields inferred from Gradâ€Shafranov reconstruction. Journal of Geophysical Research: Space Physics, 2014, 119, 7947-7962.	2.4	22
50	Cold Dense Ion Outflow Observed in the Martianâ€Induced Magnetotail by MAVEN. Geophysical Research Letters, 2018, 45, 5283-5289.	4.0	22
51	MAVEN observations of a giant ionospheric flux rope near Mars resulting from interaction between the crustal and interplanetary draped magnetic fields. Journal of Geophysical Research: Space Physics, 2017, 122, 828-842.	2.4	21
52	Properties of He+beams observed by Geotail in the lobe/mantle regions: Comparison with O+beams. Journal of Geophysical Research, 1999, 104, 6973-6985.	3.3	20
53	Cold flowing O+beams in the lobe/mantle at Geotail: Does FAST observe the source?. Journal of Geophysical Research, 2000, 105, 15931-15944.	3.3	20
54	The spatial structure of Martian magnetic flux ropes recovered by the Gradâ€Shafranov reconstruction technique. Journal of Geophysical Research: Space Physics, 2014, 119, 1262-1271.	2.4	20

#	Article	IF	CITATIONS
55	Characteristics of downward flowing ion energy dispersions observed in the low-altitude central plasma sheet by Akebono and DMSP. Journal of Geophysical Research, 1997, 102, 4821-4839.	3.3	19
56	MAVEN observations on a hemispheric asymmetry of precipitating ions toward the Martian upper atmosphere according to the upstream solar wind electric field. Journal of Geophysical Research: Space Physics, 2017, 122, 1083-1101.	2.4	19
57	Observation of two distinct cold, dense ion populations at geosynchronous orbit: local time asymmetry, solar wind dependence and origin. Annales Geophysicae, 2006, 24, 3451-3465.	1.6	18
58	Vertical Propagation of Wave Perturbations in the Middle Atmosphere on Mars by MAVEN/IUVS. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006481.	3.6	18
59	Dayside reconnected field lines in the south-dusk near-tail flank during an IMF By> 0 dominated period. Geophysical Research Letters, 1997, 24, 931-934.	4.0	17
60	A new perspective on plasma supply mechanisms to the magnetotail from a statistical comparison of dayside mirroring O+at low altitudes with lobe/mantle beams. Journal of Geophysical Research, 2002, 107, SMP 7-1.	3.3	17
61	ERG – A small-satellite mission to investigate the dynamics of the inner magnetosphere. Advances in Space Research, 2006, 38, 1861-1869.	2.6	17
62	Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations. Geophysical Research Letters, 2015, 42, 8933-8941.	4.0	17
63	Geospace exploration project: Arase (ERG). Journal of Physics: Conference Series, 2017, 869, 012095.	0.4	17
64	Periodic emergence of multicomposition cold ions modulated by geomagnetic field line oscillations in the near-Earth magnetosphere. Journal of Geophysical Research, 2004, 109, .	3.3	16
65	Ion energization during substorms at Mercury. Planetary and Space Science, 2007, 55, 1502-1508.	1.7	16
66	A Review of General Physical and Chemical Processes Related to Plasma Sources and Losses for Solar System Magnetospheres. Space Science Reviews, 2015, 192, 27-89.	8.1	16
67	Evidence for Crustal Magnetic Field Control of Ions Precipitating Into the Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 8572-8586.	2.4	16
68	Comparative study of outer-zone relativistic electrons observed by Akebono and CRRES. Journal of Geophysical Research, 2005, 110 , .	3.3	15
69	Effect of R2â€FAC development on the ionospheric electric field pattern deduced by a global ionospheric potential solver. Journal of Geophysical Research, 2012, 117, .	3.3	15
70	Effects of the surface conductivity and the IMF strength on the dynamics of planetary ions in Mercury's magnetosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 3233-3242.	2.4	15
71	Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 7739-7752.	2.4	15
72	Global Structure and Sodium Ion Dynamics in Mercury's Magnetosphere With the Offset Dipole. Journal of Geophysical Research: Space Physics, 2017, 122, 10,990.	2.4	15

#	Article	IF	Citations
73	lon Energies Dominating Energy Density in the Inner Magnetosphere: Spatial Distributions and Composition, Observed by Arase/MEPâ€i. Geophysical Research Letters, 2018, 45, 12,153-12,162.	4.0	15
74	The secondary instability initiated by the three-dimensional nonlinear evolution of the Kelvin-Helmholtz instability. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	14
75	Centrifugally stimulated exospheric ion escape at Mercury. Geophysical Research Letters, 2012, 39, .	4.0	14
76	Statistical properties of planetary heavyâ€ion precipitations toward the Martian ionosphere obtained from Mars Express. Journal of Geophysical Research: Space Physics, 2013, 118, 5348-5357.	2.4	14
77	Periodic variations of oxygen EUV dayglow in the upper atmosphere of Venus: Hisaki/EXCEED observations. Journal of Geophysical Research E: Planets, 2015, 120, 2037-2052.	3.6	14
78	MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015. Geophysical Research Letters, 2016, 43, 4816-4824.	4.0	14
79	In situ observations of ions and magnetic field around Phobos: the mass spectrum analyzer (MSA) for the Martian Moons eXploration (MMX) mission. Earth, Planets and Space, 2021, 73, .	2.5	14
80	Magnetosphere–Exosphere–Surface Coupling at Mercury. Space Science Reviews, 2007, 132, 551-573.	8.1	13
81	Effect of solar wind variation on lowâ€energy O ⁺ populations in the magnetosphere during geomagnetic storms: FAST observations. Journal of Geophysical Research, 2008, 113, .	3.3	13
82	Self-consistent kinetic numerical simulation model for ring current particles in the Earth's inner magnetosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	13
83	O ⁺ ion beams reflected below the Martian bow shock: MAVEN observations. Journal of Geophysical Research: Space Physics, 2016, 121, 3093-3107.	2.4	13
84	Threeâ€Step Buildup of the 17 March 2015 Storm Ring Current: Implication for the Cause of the Unexpected Storm Intensification. Journal of Geophysical Research: Space Physics, 2018, 123, 414-428.	2.4	13
85	Alfvén waves in the near-PSBL lobe: Cluster observations. Annales Geophysicae, 2006, 24, 1001-1013.	1.6	13
86	Development of a magnetohydrodynamic simulation code satisfying the solenoidal magnetic field condition. Computer Physics Communications, 2009, 180, 1550-1557.	7.5	12
87	Characteristics of CME―and CIRâ€Driven Ion Upflows in the Polar Ionosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 3637-3649.	2.4	12
88	Two types of PSBL ion beam observed by Geotail: Their relation to low frequency electromagnetic waves and cold ion energization. Advances in Space Research, 2005, 36, 1883-1889.	2.6	11
89	Simultaneous entry of oxygen ions originating from the Sun and Earth into the inner magnetosphere during magnetic storms. Journal of Geophysical Research, 2009, 114, .	3.3	11
90	Statistical analysis of the reflection of incident O ⁺ pickup ions at Mars: MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 4089-4101.	2.4	11

#	Article	IF	CITATIONS
91	Theory, modeling, and integrated studies in the Arase (ERG) project. Earth, Planets and Space, 2018, 70, .	2.5	11
92	The Mars system revealed by the Martian Moons eXploration mission. Earth, Planets and Space, 2022, 74, .	2.5	11
93	Formation of Butterfly Pitch Angle Distributions of Relativistic Electrons in the Outer Radiation Belt With a Monochromatic Pc5 Wave. Journal of Geophysical Research: Space Physics, 2018, 123, 4679-4691.	2.4	10
94	Collaborative Research Activities of the Arase and Van Allen Probes. Space Science Reviews, 2022, 218, .	8.1	10
95	Rapid increase in relativistic electron flux controlled by nonlinear phase trapping of whistler chorus elements. Journal of Geophysical Research: Space Physics, 2016, 121, 6573-6589.	2.4	9
96	Substormâ€Associated Ionospheric Flow Fluctuations During the 27 March 2017 Magnetic Storm: SuperDARNâ€Arase Conjunction. Geophysical Research Letters, 2018, 45, 9441-9449.	4.0	9
97	A Warm Layer in the Nightside Mesosphere of Mars. Geophysical Research Letters, 2020, 47, e2019GL085646.	4.0	9
98	ON THE DYNAMICS OF CHARGED PARTICLES IN THE MAGNETOSPHERE OF MERCURY. , 2006, , 17-28.		8
99	Evolution of negative Sl―nduced ionospheric flows observed by SuperDARN King Salmon HF radar. Journal of Geophysical Research, 2012, 117, .	3.3	8
100	First evidence of patchy flickering aurora modulated by multiâ€ion electromagnetic ion cyclotron waves. Geophysical Research Letters, 2017, 44, 3963-3970.	4.0	8
101	Radial Transport of Higherâ€Energy Oxygen Ions Into the Deep Inner Magnetosphere Observed by Van Allen Probes. Geophysical Research Letters, 2018, 45, 4534-4541.	4.0	8
102	Statistical Properties of Molecular Ions in the Ring Current Observed by the Arase (ERG) Satellite. Geophysical Research Letters, 2019, 46, 8643-8651.	4.0	8
103	Low Electron Temperatures Observed at Mars by MAVEN on Dayside Crustal Magnetic Field Lines. Journal of Geophysical Research: Space Physics, 2019, 124, 7629-7637.	2.4	8
104	Strong Diffusion of Energetic Electrons by Equatorial Chorus Waves in the Midnightâ€toâ€Dawn Sector. Geophysical Research Letters, 2019, 46, 12685-12692.	4.0	8
105	Effects of the IMF Direction on Atmospheric Escape From a Marsâ€like Planet Under Weak Intrinsic Magnetic Field Conditions. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028485.	2.4	8
106	Particle and field characteristics of broadband electrons observed by the FAST satellite during a geomagnetic storm. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	7
107	Implementation of the CIP algorithm to magnetohydrodynamic simulations. Computer Physics Communications, 2008, 179, 289-296.	7. 5	7
108	Particle and field characteristics of broadband electrons observed by the FAST satellite during geomagnetic storms: A multievent study. Journal of Geophysical Research, 2008, 113, .	3.3	7

#	Article	IF	CITATIONS
109	Electron properties in invertedâ€V structures and their vicinities based on Reimei observations. Journal of Geophysical Research: Space Physics, 2014, 119, 3650-3663.	2.4	7
110	Asymmetric penetration of shocked solar wind down to 400 km altitudes at Mars. Journal of Geophysical Research: Space Physics, 2015, 120, 6874-6883.	2.4	7
111	Limited impact of escaping photoelectrons on the terrestrial polar wind flux in the polar cap. Geophysical Research Letters, 2015, 42, 3106-3113.	4.0	7
112	Dawn-dusk difference of periodic oxygen EUV dayglow variations at Venus observed by Hisaki. Icarus, 2017, 292, 102-110.	2.5	7
113	Global Distribution of ULF Waves During Magnetic Storms: Comparison of Arase, Ground Observations, and BATSRUSÂ+ÂCRCM Simulation. Geophysical Research Letters, 2018, 45, 9390-9397.	4.0	7
114	Statistical Study of Selective Oxygen Increase in Highâ€Energy Ring Current Ions During Magnetic Storms. Journal of Geophysical Research: Space Physics, 2019, 124, 3193-3209.	2.4	7
115	On the Transition Between the Inner and Outer Plasma Sheet in the Earth's Magnetotail. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027561.	2.4	7
116	Origin and dynamics of multi-component (H+/He++/He+/O+) ion flows in the lobe/mantle regions. Advances in Space Research, 2000, 25, 1581-1590.	2.6	6
117	Statistical properties of the multiple ion band structures observed by the FAST satellite. Journal of Geophysical Research, 2008, 113 , .	3.3	6
118	Simultaneous FAST and Double Star TC1 observations of broadband electrons during a storm time substorm. Journal of Geophysical Research, 2010, 115, .	3.3	6
119	Reduction of the fieldâ€aligned potential drop in the polar cap during large geomagnetic storms. Journal of Geophysical Research: Space Physics, 2013, 118, 4864-4874.	2.4	6
120	Visualization tool for three-dimensional plasma velocity distributions (ISEE_3D) as a plug-in for SPEDAS. Earth, Planets and Space, 2017, 69, .	2.5	6
121	Excitation of Storm Time Pc5 ULF Waves by Ring Current Ions Based on the Driftâ€Kinetic Simulation. Geophysical Research Letters, 2019, 46, 1911-1918.	4.0	6
122	A Statistical Study of the Solar Wind Dependence of Multiâ€Harmonic Toroidal ULF Waves Observed by the Arase Satellite. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	6
123	Reconnection event at the dayside magnetopause on January 10, 1997. Geophysical Research Letters, 1998, 25, 2529-2532.	4.0	5
124	Mercury Ion Analyzer (MIA) onboard Mercury Magnetospheric Orbiter: MMO. Advances in Space Research, 2009, 43, 1986-1992.	2.6	5
125	Electronic structures in single self-assembled InAs quantum dashes detected by nanogap metal electrodes. Applied Physics Letters, 2011, 99, 182104.	3.3	5
126	Cold Dense Ion Flows in the Distant Magnetotail: The Geotail Results. Geophysical Monograph Series, 0, , 45-60.	0.1	5

#	Article	IF	CITATIONS
127	A fullâ€particle Martian upper thermosphereâ€exosphere model using the DSMC method. Journal of Geophysical Research E: Planets, 2016, 121, 1429-1444.	3.6	5
128	Excitation of Internally Driven ULF Waves by the Driftâ€Bounce Resonance With Ring Current Ions Based on the Driftâ€Kinetic Simulation. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028231.	2.4	5
129	On the relationship between energy input to the ionosphere and the ion outflow flux under different solar zenith angles. Earth, Planets and Space, 2021, 73, 202.	2.5	5
130	A framework for estimating spherical vector fields using localized basis functions and its application to SuperDARN data processing. Earth, Planets and Space, 2020, 72, .	2.5	4
131	Study of an equatorward detachment of auroral arc from the oval using groundâ€space observations and the BATSâ€Râ€US – CIMI model. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029080.	2.4	4
132	Formation Mechanisms of the Molecular Ion Polar Plume and Its Contribution to Ion Escape From Mars. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
133	Geomagnetic conjugate observations of plasmaâ€sheet electrons by the FAST and THEMIS satellites. Journal of Geophysical Research: Space Physics, 2013, 118, 132-145.	2.4	3
134	Preferential Energization of Lowerâ€Chargeâ€State Heavier Ions in the Nearâ€Earth Magnetotail. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	3
135	Study of Slowâ€Mode Shock Formation and Particle Acceleration in the Symmetric Magnetic Reconnection Based on Hybrid Simulations. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	3
136	Vertical Coupling Between the Cloudâ€Level Atmosphere and the Thermosphere of Venus Inferred From the Simultaneous Observations by Hisaki and Akatsuki. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006192.	3.6	2
137	Lowâ€Altitude Ion Upflow Observed by EISCAT and its Effects on Supply of Molecular Ions in the Ring Current Detected by Arase (ERG). Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028951.	2.4	2
138	Multispecies MHD Study of Ion Escape at Ancient Mars: Effects of an Intrinsic Magnetic Field and Solar XUV Radiation. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
139	Outflowing ionospheric ions observed by Geotail and Akebono and their transport in the near-Earth and mid-tail magnetosphere. Advances in Space Research, 2000, 25, 1591-1601.	2.6	1
140	Ion-dispersion and rapid electron fluctuations in the cusp: a case study. Annales Geophysicae, 2008, 26, 2485-2502.	1.6	1
141	Evidence for a Multi-scale Aurora. , 2011, , 271-280.		1
142	Science Enhancements by the MAVEN Participating Scientists. Space Science Reviews, 2015, 195, 319-355.	8.1	1
143	A Statistical Study of Slowâ€Mode Shocks Observed by MMS in the Dayside Magnetopause. Geophysical Research Letters, 2018, 45, 4675-4684.	4.0	1
144	Relative Contribution of ULF Waves and Whistlerâ€mode Chorus to the Radiation Belt Variation during the May 2017 Storm. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028972.	2.4	1

#	Article	IF	Citations
145	In-flight Performance and Initial Results of Plasma Energy Angle and Composition Experiment (PACE) on SELENE (Kaguya). , 2010, , 265-303.		1
146	High-contrast apodization baffle for instruments onboard solar system exploration missions. , 2018, , .		1
147	Dynamics of magnetospheric ions at Mercury : some open questions awaiting Bepi Colombo measurements. , 2009, , .		O
148	Comparative Study of Global MHD Simulations of the Terrestrial Magnetosphere With Different Numerical Schemes. IEEE Transactions on Plasma Science, 2010, 38, 2229-2235.	1.3	0
149	Growth of self-assembled InAs quantum dashes and their applications to single electron transistors. , 2011, , .		O
150	Magnetosphere–Exosphere–Surface Coupling at Mercury. Space Sciences Series of ISSI, 2008, , 369-391.	0.0	0
151	Alternate Appearance of He+ and O+ in the Multi-Component Ion Flows in the Lobe/Mantle Regions: Geotail Observations. Astrophysics and Space Science Library, 1998, , 417-420.	2.7	0
152	A Review of General Physical and Chemical Processes Related to Plasma Sources and Losses for Solar System Magnetospheres. Space Sciences Series of ISSI, 2016, , 27-89.	0.0	0
153	Design for stray-light reduction to a Martian ionospheric imager. Applied Optics, 2020, 59, 9937.	1.8	O