William E Rainey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/266766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted Mutational Analysis of Cortisol-Producing Adenomas. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e594-e603.	3.6	13
2	Pathophysiology of bilateral hyperaldosteronism. Current Opinion in Endocrinology, Diabetes and Obesity, 2022, 29, 233-242.	2.3	5
3	Histopathology and Genetic Causes of Primary Aldosteronism in Young Adults. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2473-2482.	3.6	4
4	International Histopathology Consensus for Unilateral Primary Aldosteronism. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 42-54.	3.6	127
5	Masking by hypokalemia—primary aldosteronism with undetectable aldosterone. CKJ: Clinical Kidney Journal, 2021, 14, 1269-1271.	2.9	1
6	The Age-Dependent Changes of the Human Adrenal Cortical Zones Are Not Congruent. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1389-1397.	3.6	11
7	Aldosterone-Regulating Receptors and Aldosterone-Driver Somatic Mutations. Frontiers in Endocrinology, 2021, 12, 644382.	3.5	11
8	Corticotroph tumor progression after bilateral adrenalectomy (Nelson's syndrome): systematic review and expert consensus recommendations. European Journal of Endocrinology, 2021, 184, P1-P16.	3.7	32
9	RNA-binding proteins regulate aldosterone homeostasis in human steroidogenic cells. Rna, 2021, 27, 933-945.	3.5	5
10	Concomitant Pheochromocytoma and Primary Aldosteronism: A Case Series and Literature Review. Journal of the Endocrine Society, 2021, 5, bvab107.	0.2	11
11	Targeted RNA sequencing of adrenal zones using immunohistochemistry-guided capture of formalin-fixed paraffin-embedded tissue. Molecular and Cellular Endocrinology, 2021, 530, 111296.	3.2	4
12	Approaches to Gene Mutation Analysis Using Formalin-Fixed Paraffin-Embedded Adrenal Tumor Tissue From Patients With Primary Aldosteronism. Frontiers in Endocrinology, 2021, 12, 683588.	3.5	8
13	GENETICS IN ENDOCRINOLOGY: Impact of race and sex on genetic causes of aldosterone-producing adenomas. European Journal of Endocrinology, 2021, 185, R1-R11.	3.7	23
14	Intratumoral steroid profiling of adrenal cortisol-producing adenomas by liquid chromatography- mass spectrometry. Journal of Steroid Biochemistry and Molecular Biology, 2021, 212, 105924.	2.5	3
15	Single-Center Prospective Cohort Study on the Histopathology, Genotype, and Postsurgical Outcomes of Patients With Primary Aldosteronism. Hypertension, 2021, 78, 738-746.	2.7	35
16	Transcriptomic Response Dynamics of Human Primary and Immortalized Adrenocortical Cells to Steroidogenic Stimuli. Cells, 2021, 10, 2376.	4.1	6
17	Circadian rhythms of 11-oxygenated C19 steroids and â^†5-steroid sulfates in healthy men. European Journal of Endocrinology, 2021, 185, K1-K6.	3.7	12
18	Primary Cultures and Cell Lines for <i>In Vitro</i> Modeling of the Human Adrenal Cortex. Tohoku Journal of Experimental Medicine, 2021, 253, 217-232.	1.2	9

#	Article	IF	CITATIONS
19	Comprehensive Analysis of Steroid Biomarkers for Guiding Primary Aldosteronism Subtyping. Hypertension, 2020, 75, 183-192.	2.7	42
20	Histological Characterization of Aldosterone-producing Adrenocortical Adenomas with Different Somatic Mutations. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e282-e289.	3.6	29
21	The Concordance Between Imaging and Adrenal Vein Sampling Varies With Aldosterone-Driver Somatic Mutation. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e3628-e3637.	3.6	14
22	Targeted RNAseq of Formalin-Fixed Paraffin-Embedded Tissue to Differentiate Among Benign and Malignant Adrenal Cortical Tumors. Hormone and Metabolic Research, 2020, 52, 607-613.	1.5	9
23	Prevalence of Somatic Mutations in Aldosterone-Producing Adenomas in Japanese Patients. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4066-e4073.	3.6	38
24	Primary aldosteronism diagnostics: KCNJ5 mutations and hybrid steroid synthesis in aldosterone-producing adenomas. Gland Surgery, 2020, 9, 3-13.	1.1	7
25	Sex Differences in 11-Oxygenated Androgen Patterns Across Adulthood. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2921-e2929.	3.6	48
26	Biochemical, Histopathological, and Genetic Characterization of Posture-Responsive and Unresponsive APAs. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e3224-e3235.	3.6	21
27	The Potential Role of Aldosterone-Producing Cell Clusters in Adrenal Disease. Hormone and Metabolic Research, 2020, 52, 427-434.	1.5	7
28	11-Oxygenated androgens in health and disease. Nature Reviews Endocrinology, 2020, 16, 284-296.	9.6	99
29	Genetic, Cellular, and Molecular Heterogeneity in Adrenals With Aldosterone-Producing Adenoma. Hypertension, 2020, 75, 1034-1044.	2.7	89
30	Somatic <i>CACNA1H</i> Mutation As a Cause of Aldosterone-Producing Adenoma. Hypertension, 2020, 75, 645-649.	2.7	69
31	Molecular and Electrophysiological Analyses of ATP2B4 Gene Variants in Bilateral Adrenal Hyperaldosteronism. Hormones and Cancer, 2020, 11, 52-62.	4.9	8
32	Identification of Somatic Mutations in CLCN2 in Aldosterone-Producing Adenomas. Journal of the Endocrine Society, 2020, 4, bvaa123.	0.2	27
33	SAT-554 Genetic Profile of Early-Onset Aldosterone-Producing Adenomas. Journal of the Endocrine Society, 2020, 4, .	0.2	0
34	Steroid biomarkers in human adrenal disease. Journal of Steroid Biochemistry and Molecular Biology, 2019, 190, 273-280.	2.5	27
35	11-Oxygenated C19 Steroids Do Not Decline With Age in Women. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2615-2622.	3.6	74
36	Circulating 11-oxygenated androgens across species. Journal of Steroid Biochemistry and Molecular Biology, 2019, 190, 242-249.	2.5	46

#	Article	IF	CITATIONS
37	Targeted Assessment of <i>GOS2</i> Methylation Identifies a Rapidly Recurrent, Routinely Fatal Molecular Subtype of Adrenocortical Carcinoma. Clinical Cancer Research, 2019, 25, 3276-3288.	7.0	51
38	Genetic Characteristics of Aldosterone-Producing Adenomas in Blacks. Hypertension, 2019, 73, 885-892.	2.7	121
39	Chemogenetic activation of adrenocortical Gq signaling causes hyperaldosteronism and disrupts functional zonation. Journal of Clinical Investigation, 2019, 130, 83-93.	8.2	16
40	SAT-010 Adrenal Androgen Synthesis in Aging Men. Journal of the Endocrine Society, 2019, 3, .	0.2	1
41	Somatic mutations in adrenocortical carcinoma with primary aldosteronism or hyperreninemic hyperaldosteronism. Endocrine-Related Cancer, 2019, 26, 217-225.	3.1	10
42	SAT-345 11-oxygenated Adrenal Androgens Are Produced In Several Mammalian Species. Journal of the Endocrine Society, 2019, 3, .	0.2	0
43	OR29-3 Targeted Assessment of GOS2 Methylation Identifies a Rapidly Recurrent, Routinely Fatal Molecular Subtype of Adrenocortical Carcinoma. Journal of the Endocrine Society, 2019, 3, .	0.2	Ο
44	SUN-387 ACTH-Independent Cushing Syndrome from Pregnancy-Induced Micronodular Hyperplasia. Journal of the Endocrine Society, 2019, 3, .	0.2	0
45	SUN-364 In Search of Predictors of Concordance between Imaging and Adrenal Vein Sampling in Unilateral Primary Aldosteronism. Journal of the Endocrine Society, 2019, 3, .	0.2	Ο
46	SAT-061 Determinants of Cosyntropin Effect on Adrenal Vein Sampling Lateralization in Primary Aldosteronism. Journal of the Endocrine Society, 2019, 3, .	0.2	0
47	SAT-LB062 Adrenal Sexual Dimorphism Is Abolished by Tissue-Targeted Deletion of the Androgen Receptor. Journal of the Endocrine Society, 2019, 3, .	0.2	0
48	SAT-352 Comprehensive Genetic Analysis of Cortisol-Producing Adenomas. Journal of the Endocrine Society, 2019, 3, .	0.2	0
49	Adrenocorticotropin Acutely Regulates Pregnenolone Sulfate Production by the Human Adrenal In Vivo and In Vitro. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 320-327.	3.6	24
50	High-Resolution Tissue Mass Spectrometry Imaging Reveals a Refined Functional Anatomy of the Human Adult Adrenal Gland. Endocrinology, 2018, 159, 1511-1524.	2.8	37
51	Aging and Adrenal Aldosterone Production. Hypertension, 2018, 71, 218-223.	2.7	47
52	11-ketotestosterone is the dominant circulating bioactive androgen during normal and premature adrenarche. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4589-4598.	3.6	73
53	Human Urinary mRNA as a Biomarker of Cardiovascular Disease. Circulation Genomic and Precision Medicine, 2018, 11, e002213.	3.6	25
54	Cellular and Genetic Causes of Idiopathic Hyperaldosteronism. Hypertension, 2018, 72, 874-880.	2.7	137

#	Article	IF	CITATIONS
55	Targeted Molecular Characterization of Aldosterone-Producing Adenomas in White Americans. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3869-3876.	3.6	122
56	Histopathological classification of cross-sectional image negative hyperaldosteronism. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-2986.	3.6	96
57	Genetic and Histopathologic Intertumor Heterogeneity in Primary Aldosteronism. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1792-1796.	3.6	22
58	Age-Related Autonomous Aldosteronism. Circulation, 2017, 136, 347-355.	1.6	117
59	Development of monoclonal antibodies against the human 3β-hydroxysteroid dehydrogenase/isomerase isozymes. Steroids, 2017, 127, 56-61.	1.8	18
60	Aldosterone-Producing Cell Clusters in Normal and Pathological States. Hormone and Metabolic Research, 2017, 49, 951-956.	1.5	37
61	Aldosterone-Producing Cell Clusters Frequently Harbor Somatic Mutations and Accumulate With Age in Normal Adrenals. Journal of the Endocrine Society, 2017, 1, 787-799.	0.2	87
62	Suppressive effects of RXR agonist PA024 on adrenal CYP11B2 expression, aldosterone secretion and blood pressure. PLoS ONE, 2017, 12, e0181055.	2.5	9
63	GPER-independent inhibition of adrenocortical cancer growth by G-1 involves ROS/Egr-1/BAX pathway. Oncotarget, 2017, 8, 115609-115619.	1.8	6
64	Double adrenocortical adenomas harboring independent KCNJ5 and PRKACA somatic mutations. European Journal of Endocrinology, 2016, 175, K1-K6.	3.7	37
65	ATR-101, a Selective and Potent Inhibitor of Acyl-CoA Acyltransferase 1, Induces Apoptosis in H295R Adrenocortical Cells and in the Adrenal Cortex of Dogs. Endocrinology, 2016, 157, 1775-1788.	2.8	65
66	Mutated KCNJ5 activates the acute and chronic regulatory steps in aldosterone production. Journal of Molecular Endocrinology, 2016, 57, 1-11.	2.5	35
67	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-736.	16.8	482
68	Synthetic High-Density Lipoprotein (sHDL) Inhibits Steroid Production in HAC15 Adrenal Cells. Endocrinology, 2016, 157, 3122-3129.	2.8	5
69	Age-dependent Increases in Adrenal Cytochrome b5 and Serum 5-Androstenediol-3-sulfate. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4585-4593.	3.6	34
70	H295R expression of melanocortin 2 receptor accessory protein results in ACTH responsiveness. Journal of Molecular Endocrinology, 2016, 56, 69-76.	2.5	16
71	Molecular Heterogeneity in Aldosterone-Producing Adenomas. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 999-1007.	3.6	74
72	Adrenal-derived 11-oxygenated 19-carbon steroids are the dominant androgens in classic 21-hydroxylase deficiency. European Journal of Endocrinology, 2016, 174, 601-609.	3.7	168

#	Article	IF	CITATIONS
73	Development of a novel cell based androgen screening model. Journal of Steroid Biochemistry and Molecular Biology, 2016, 156, 17-22.	2.5	60
74	Development of Adrenal Cortex Zonation. Endocrinology and Metabolism Clinics of North America, 2015, 44, 243-274.	3.2	116
75	Bone Morphogenetic Protein-4 (BMP4): A Paracrine Regulator of Human Adrenal C19 Steroid Synthesis. Endocrinology, 2015, 156, 2530-2540.	2.8	20
76	Introduction to the 2014 Adrenal Cortex Conference Keith L. Parker Memorial Lecturer: Bernard Schimmer, Ph.D Molecular and Cellular Endocrinology, 2015, 408, 2-4.	3.2	1
77	Potassium channels related to primary aldosteronism: Expression similarities and differences between human and rat adrenals. Molecular and Cellular Endocrinology, 2015, 417, 141-148.	3.2	29
78	Cell-Based Assays for Screening Androgen Receptor Ligands. Seminars in Reproductive Medicine, 2015, 33, 225-234.	1.1	18
79	Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proceedings of the United States of America, 2015, 112, E4591-9.	7.1	256
80	Measurement of Peripheral Plasma 18-Oxocortisol Can Discriminate Unilateral Adenoma From Bilateral Diseases in Patients With Primary Aldosteronism. Hypertension, 2015, 65, 1096-1102.	2.7	105
81	Profiles of 21-Carbon Steroids in 21-hydroxylase Deficiency. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2283-2290.	3.6	65
82	Understanding primary aldosteronism: impact of next generation sequencing and expression profiling. Molecular and Cellular Endocrinology, 2015, 399, 311-320.	3.2	45
83	Adrenal Androgens and Androgen Precursors—Definition, Synthesis, Regulation and Physiologic Actions. , 2014, 4, 1369-1381.		80
84	Aberrant gonadotropin-releasing hormone receptor (GnRHR) expression and its regulation of CYP11B2 expression and aldosterone production in adrenal aldosterone-producing adenoma (APA). Molecular and Cellular Endocrinology, 2014, 384, 102-108.	3.2	15
85	Transcriptome Profiling Reveals Differentially Expressed Transcripts Between the Human Adrenal Zona Fasciculata and Zona Reticularis. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E518-E527.	3.6	49
86	Adrenal CYP11B1/2 expression in primary aldosteronism: Immunohistochemical analysis using novel monoclonal antibodies. Molecular and Cellular Endocrinology, 2014, 392, 73-79.	3.2	84
87	Development of monoclonal antibodies against human CYP11B1 and CYP11B2. Molecular and Cellular Endocrinology, 2014, 383, 111-117.	3.2	225
88	Sodium Deficiency Regulates Rat Adrenal Zona Glomerulosa Gene Expression. Endocrinology, 2014, 155, 1363-1372.	2.8	27
89	Angiotensin II receptor blockers differentially affect CYP11B2 expression in human adrenal H295R cells. Molecular and Cellular Endocrinology, 2014, 383, 60-68.	3.2	8
90	A Novel Y152C KCNJ5 Mutation Responsible for Familial Hyperaldosteronism Type III. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1861-E1865.	3.6	86

#	Article	IF	CITATIONS
91	11β-Hydroxyandrostenedione, the product of androstenedione metabolism in the adrenal, is metabolized in LNCaP cells by 5α-reductase yielding 11β-hydroxy-5α-androstanedione. Journal of Steroid Biochemistry and Molecular Biology, 2013, 138, 132-142.	2.5	80
92	Liquid Chromatography–Tandem Mass Spectrometry Analysis of Human Adrenal Vein 19-Carbon Steroids Before and After ACTH Stimulation. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 1182-1188.	3.6	193
93	Transcriptome Analysis Reveals Differentially Expressed Transcripts in Rat Adrenal Zona Glomerulosa and Zona Fasciculata. Endocrinology, 2012, 153, 1755-1763.	2.8	41
94	Effect of <i>KCNJ5</i> Mutations on Gene Expression in Aldosterone-Producing Adenomas and Adrenocortical Cells. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1567-E1572.	3.6	130
95	Acute and chronic regulation of aldosterone production. Molecular and Cellular Endocrinology, 2012, 350, 151-162.	3.2	244
96	Development of the human adrenal zona reticularis: morphometric and immunohistochemical studies from birth to adolescence. Journal of Endocrinology, 2009, 203, 241-252.	2.6	71
97	Type 5 17β-Hydroxysteroid Dehydrogenase (AKR1C3) Contributes to Testosterone Production in the Adrenal Reticularis. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2192-2198.	3.6	108
98	Adrenal changes associated with adrenarche. Reviews in Endocrine and Metabolic Disorders, 2009, 10, 19-26.	5.7	74
99	Angiotensin II regulation of adrenocortical gene transcription. Molecular and Cellular Endocrinology, 2009, 302, 230-236.	3.2	51
100	G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism. Journal of Endocrinology, 2007, 195, 39-48.	2.6	101
101	The post-menopausal ovary displays a unique pattern of steroidogenic enzyme expression. Human Reproduction, 2006, 21, 309-317.	0.9	47
102	Elevated Expression of Luteinizing Hormone Receptor in Aldosterone-Producing Adenomas. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1136-1142.	3.6	89
103	Corticotropin-Releasing Hormone Directly Stimulates Cortisol and the Cortisol Biosynthetic Pathway in Human Fetal Adrenal Cells. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 279-285.	3.6	81
104	The Human Fetal Adrenal: Making Adrenal Androgens for Placental Estrogens. Seminars in Reproductive Medicine, 2004, 22, 327-336.	1.1	94
105	The Rise in Adrenal Androgen Biosynthesis: Adrenarche. Seminars in Reproductive Medicine, 2004, 22, 337-347.	1.1	159
106	Adrenarche $\hat{a} \in $ physiology, biochemistry and human disease. Clinical Endocrinology, 2004, 60, 288-296.	2.4	279
107	Fetal and maternal adrenals in human pregnancy. Obstetrics and Gynecology Clinics of North America, 2004, 31, 817-835.	1.9	50
108	Adrenocortical cell lines. Molecular and Cellular Endocrinology, 2004, 228, 23-38.	3.2	203

#	Article	IF	CITATIONS
109	THE ADRENAL GENETIC PUZZLE: HOW DO THE FETAL AND ADULT PIECES DIFFER?. Endocrine Research, 2002, 28, 611-622.	1.2	26
110	Dissecting human adrenal androgen production. Trends in Endocrinology and Metabolism, 2002, 13, 234-239.	7.1	260
111	A functional analysis of angiotensin II targets through genome wide surveys. American Journal of Hypertension, 2001, 14, A147-A148.	2.0	0
112	Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: immunohistochemical studies. Clinical Endocrinology, 2000, 53, 739-747.	2.4	176
113	The Application of High Density Microarray for Analysis of Mitogenic Signaling and Cell-Cycle in the Adrenal. Endocrine Research, 2000, 26, 807-823.	1.2	5
114	Transcriptional Regulation of Human 11Â-Hydroxylase (hCYP11B1). Endocrinology, 2000, 141, 3587-3594.	2.8	16
115	Bone Morphogenetic Protein Inhibits Ovarian Androgen Production. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 3331-3337.	3.6	17
116	Adrenarche Results from Development of a 3β-Hydroxysteroid Dehydrogenase-Deficient Adrenal Reticularis1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 3695-3701.	3.6	111
117	Ca ²⁺ -Regulated Expression of Aldosterone Synthase Is Mediated By Calmodulin and Calmodulin-Dependent Protein Kinases. Endocrinology, 1997, 138, 835-838.	2.8	65
118	Ca2+-Regulated Expression of Aldosterone Synthase Is Mediated By Calmodulin and Calmodulin-Dependent Protein Kinases. Endocrinology, 1997, 138, 835-838.	2.8	19
119	Telomerase activity in human germline and embryonic tissues and cells. Genesis, 1996, 18, 173-179.	2.1	1,172
120	Calcium regulates human CYP11B2 transcription. Endocrine Research, 1996, 22, 485-492.	1.2	39
121	Telomerase activity in human germline and embryonic tissues and cells. , 1996, 18, 173.		7
122	Telomerase activity in human germline and embryonic tissues and cells. Genesis, 1996, 18, 173-179.	2.1	32
123	The effects of KN62, A Ca2+/Calmodulin-dependent protein kinase II inhibitor, on adrenocortical cell aldosterone production. Endocrine Research, 1995, 21, 259-265.	1.2	16
124	Potassium Negatively Regulates Angiotensin II Type 1 Receptor Expression in Human Adrenocortical H295R Cells. Hypertension, 1995, 25, 1129-1134.	2.7	27
125	Regulation of 3β-Hydroxysteroid Dehydrogenase in Adrenocortical Cells: Effects of Angiotensin-II and Transforming Growth Factor Beta. Endocrine Research, 1991, 17, 281-296.	1.2	51