Giulio Superti-Furga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2667650/publications.pdf Version: 2024-02-01

		3668	3171
269	39,836	92	192
papers	citations	h-index	g-index
313	313	313	55020
all docs	docs citations	times ranked	citing authors

CILILIO SUDERTI-FURCA

#	Article	IF	CITATIONS
1	Functional Precision Medicine Provides Clinical Benefit in Advanced Aggressive Hematologic Cancers and Identifies Exceptional Responders. Cancer Discovery, 2022, 12, 372-387.	7.7	77
2	Targeting solute carriers to modulate receptor–ligand interactions. Trends in Pharmacological Sciences, 2022, , .	4.0	1
3	Impedance-Based Phenotypic Readout of Transporter Function: A Case for Glutamate Transporters. Frontiers in Pharmacology, 2022, 13, .	1.6	2
4	A guide to plasma membrane solute carrier proteins. FEBS Journal, 2021, 288, 2784-2835.	2.2	168
5	Precision Medicine in Hematology 2021: Definitions, Tools, Perspectives, and Open Questions. HemaSphere, 2021, 5, e536.	1.2	11
6	Cell-surface SLC nucleoside transporters and purine levels modulate BRD4-dependent chromatin states. Nature Metabolism, 2021, 3, 651-664.	5.1	7
7	Recent developments in ligands and chemical probes targeting solute carrier transporters. Current Opinion in Chemical Biology, 2021, 62, 53-63.	2.8	12
8	An Overview of Cell-Based Assay Platforms for the Solute Carrier Family of Transporters. Frontiers in Pharmacology, 2021, 12, 722889.	1.6	31
9	Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators. Nature Communications, 2021, 12, 7009.	5.8	22
10	Metabolic drug survey highlights cancer cell dependencies and vulnerabilities. Nature Communications, 2021, 12, 7190.	5.8	7
11	Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation. Nature Communications, 2021, 12, 7276.	5.8	37
12	elF2B as a Target for Viral Evasion of PKR-Mediated Translation Inhibition. MBio, 2020, 11, .	1.8	18
13	Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import. Nature Communications, 2020, 11, 6145.	5.8	78
14	Targeted Degradation of SLC Transporters Reveals Amenability of Multi-Pass Transmembrane Proteins to Ligand-Induced Proteolysis. Cell Chemical Biology, 2020, 27, 728-739.e9.	2.5	60
15	TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR7–9. Nature, 2020, 581, 316-322.	13.7	117
16	Caught in the genetic network: a novel regulator of lipid metabolism. Nature Metabolism, 2020, 2, 483-484.	5.1	2
17	A widespread role for SLC transmembrane transporters in resistance to cytotoxic drugs. Nature Chemical Biology, 2020, 16, 469-478.	3.9	84
18	Patient-derived model systems and the development of next-generation anticancer therapeutics. Current Opinion in Chemical Biology, 2020, 56, 72-78.	2.8	10

#	Article	IF	CITATIONS
19	The RESOLUTE consortium: unlocking SLC transporters for drug discovery. Nature Reviews Drug Discovery, 2020, 19, 429-430.	21.5	53
20	A substrateâ€based ontology for human solute carriers. Molecular Systems Biology, 2020, 16, e9652.	3.2	31
21	The transporters SLC35A1 and SLC30A1 play opposite roles in cell survival upon VSV virus infection. Scientific Reports, 2019, 9, 10471.	1.6	13
22	Insights into the transport side of the human SLC38A9 transceptor. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1558-1567.	1.4	24
23	IRF1 is critical for the TNF-driven interferon response in rheumatoid fibroblast-like synoviocytes. Experimental and Molecular Medicine, 2019, 51, 1-11.	3.2	49
24	Common Nodes of Virus–Host Interaction Revealed Through an Integrated Network Analysis. Frontiers in Immunology, 2019, 10, 2186.	2.2	67
25	Genome-scale CRISPR screens are efficient in non-homologous end-joining deficient cells. Scientific Reports, 2019, 9, 15751.	1.6	11
26	Transcriptional Responses to IFN-Î ³ Require Mediator Kinase-Dependent Pause Release and Mechanistically Distinct CDK8 and CDK19 Functions. Molecular Cell, 2019, 76, 485-499.e8.	4.5	52
27	Combined chemosensitivity and chromatin profiling prioritizes drug combinations in CLL. Nature Chemical Biology, 2019, 15, 232-240.	3.9	34
28	FOXO3 is involved in the tumor necrosis factor-driven inflammatory response in fibroblast-like synoviocytes. Laboratory Investigation, 2019, 99, 648-658.	1.7	20
29	The phosphatase UBASH3B/Sts-1 is a negative regulator of Bcr-Abl kinase activity and leukemogenesis. Leukemia, 2019, 33, 2319-2323.	3.3	10
30	Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death and Differentiation, 2019, 26, 1138-1155.	5.0	26
31	Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress. Journal of Clinical Investigation, 2019, 129, 4194-4206.	3.9	41
32	LZTR1 is a regulator of RAS ubiquitination and signaling. Science, 2018, 362, 1171-1177.	6.0	142
33	NSs Protein of Sandfly Fever Sicilian Phlebovirus Counteracts Interferon (IFN) Induction by Masking the DNA-Binding Domain of IFN Regulatory Factor 3. Journal of Virology, 2018, 92, .	1.5	17
34	Recent advances in combinatorial drug screening and synergy scoring. Current Opinion in Pharmacology, 2018, 42, 102-110.	1.7	80
35	In silico Prioritization of Transporter–Drug Relationships From Drug Sensitivity Screens. Frontiers in Pharmacology, 2018, 9, 1011.	1.6	23
36	mTOR Senses Environmental Cues to Shape the Fibroblast-like Synoviocyte Response to Inflammation. Cell Reports, 2018, 23, 2157-2167.	2.9	62

#	Article	IF	CITATIONS
37	The Bicarbonate Transporter SLC4A7 Plays a Key Role in Macrophage Phagosome Acidification. Cell Host and Microbe, 2018, 23, 766-774.e5.	5.1	65
38	MLL-fusion-driven leukemia requires SETD2 to safeguard genomic integrity. Nature Communications, 2018, 9, 1983.	5.8	43
39	Detection of Chemical Engagement of Solute Carrier Proteins by a Cellular Thermal Shift Assay. ACS Chemical Biology, 2018, 13, 1480-1486.	1.6	37
40	Next generation of network medicine: interdisciplinary signaling approaches. Integrative Biology (United Kingdom), 2017, 9, 97-108.	0.6	32
41	Global survey of the immunomodulatory potential of common drugs. Nature Chemical Biology, 2017, 13, 681-690.	3.9	53
42	Artemisinins Target GABAA Receptor Signaling and Impair α Cell Identity. Cell, 2017, 168, 86-100.e15.	13.5	330
43	LAMTOR/Ragulator is a negative regulator of Arl8b- and BORC-dependent late endosomal positioning. Journal of Cell Biology, 2017, 216, 4199-4215.	2.3	91
44	Lapatinib potentiates cytotoxicity of ÂYM155 in neuroblastoma via inhibition of the ABCB1 efflux transporter. Scientific Reports, 2017, 7, 3091.	1.6	35
45	Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia, 2017, 31, 2388-2397.	3.3	110
46	Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: interim results from a single-arm, open-label, pilot study. Lancet Haematology,the, 2017, 4, e595-e606.	2.2	130
47	Combinatorial Drug Screening Identifies Ewing Sarcoma–specific Sensitivities. Molecular Cancer Therapeutics, 2017, 16, 88-101.	1.9	17
48	Sustained activation of the AKT/mTOR and MAP kinase pathways mediate resistance to the Src inhibitor, dasatinib, in thyroid cancer. Oncotarget, 2017, 8, 103014-103031.	0.8	9
49	TKI rotation-induced persistent deep molecular response in multi-resistant blast crisis of Ph+ CML. Oncotarget, 2017, 8, 23061-23072.	0.8	13
50	A time-resolved molecular map of the macrophage response to VSV infection. Npj Systems Biology and Applications, 2016, 2, 16027.	1.4	42
51	NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nature Genetics, 2016, 48, 777-784.	9.4	125
52	Mapping the chemical chromatin reactivation landscape identifies BRD4-TAF1 cross-talk. Nature Chemical Biology, 2016, 12, 504-510.	3.9	43
53	Germline RBBP6 mutations in familial myeloproliferative neoplasms. Blood, 2016, 127, 362-365.	0.6	49
54	Crystal Structure of the Acid Sphingomyelinase-like Phosphodiesterase SMPDL3B Provides Insights into Determinants of Substrate Specificity. Journal of Biological Chemistry, 2016, 291, 24054-24064.	1.6	20

#	Article	IF	CITATIONS
55	Identifying Kinase Substrates via a Heavy ATP Kinase Assay and Quantitative Mass Spectrometry. Scientific Reports, 2016, 6, 28107.	1.6	22
56	Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions. Nature Immunology, 2016, 17, 1361-1372.	7.0	114
57	An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Molecular and Cellular Proteomics, 2016, 15, 1139-1150.	2.5	23
58	Structural Basis for Nucleotide Hydrolysis by the Acid Sphingomyelinase-like Phosphodiesterase SMPDL3A. Journal of Biological Chemistry, 2016, 291, 6376-6385.	1.6	13
59	Functional crosstalk between membrane lipids and TLR biology. Current Opinion in Cell Biology, 2016, 39, 28-36.	2.6	44
60	An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Molecular and Cellular Proteomics, 2016, 15, 1139-1150.	2.5	9
61	Overcoming MITF-conferred drug resistance through dual AURKA/MAPK targeting in human melanoma cells. Cell Death and Disease, 2016, 7, e2135-e2135.	2.7	22
62	A Surface Biotinylation Strategy for Reproducible Plasma Membrane Protein Purification and Tracking of Genetic and Drug-Induced Alterations. Journal of Proteome Research, 2016, 15, 647-658.	1.8	39
63	Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth. Leukemia, 2016, 30, 464-472.	3.3	48
64	SLC38A9: A lysosomal amino acid transporter at the core of the amino acid-sensing machinery that controls MTORC1. Autophagy, 2016, 12, 1061-1062.	4.3	26
65	Profiling of Small Molecules by Chemical Proteomics. Methods in Molecular Biology, 2016, 1394, 211-218.	0.4	16
66	Reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2. Journal of Clinical Investigation, 2016, 126, 4482-4496.	3.9	60
67	Enhancing cognate target elution efficiency in gel-free chemical proteomics. EuPA Open Proteomics, 2015, 9, 43-53.	2.5	2
68	Systems biology. , 2015, , 134-138.		0
69	A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death and Disease, 2015, 6, e1767-e1767.	2.7	157
70	Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network. MBio, 2015, 6, e00712.	1.8	121
71	Superoxide Dismutase 1 Protects Hepatocytes from Type I Interferon-Driven Oxidative Damage. Immunity, 2015, 43, 974-986.	6.6	50
72	SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature, 2015, 519, 477-481.	13.7	561

#	Article	IF	CITATIONS
73	The RNAâ€binding protein HuR/ELAVL1 regulates IFNâ€Î²ÂmRNA abundance and the type I IFN response. Europe Journal of Immunology, 2015, 45, 1500-1511.	an 1.6	49
74	Targeting a cell state common to tripleâ€negative breast cancers. Molecular Systems Biology, 2015, 11, 789.	3.2	21
75	A Call for Systematic Research on Solute Carriers. Cell, 2015, 162, 478-487.	13.5	457
76	The Lipid-Modifying Enzyme SMPDL3B Negatively Regulates Innate Immunity. Cell Reports, 2015, 11, 1919-1928.	2.9	74
77	Crystal structure of an SH2–kinase construct of c-Abl and effect of the SH2 domain on kinase activity. Biochemical Journal, 2015, 468, 283-291.	1.7	27
78	Pharmacological targeting of the Wdr5-MLL interaction in C/EBPα N-terminal leukemia. Nature Chemical Biology, 2015, 11, 571-578.	3.9	227
79	The promise and peril of chemical probes. Nature Chemical Biology, 2015, 11, 536-541.	3.9	698
80	A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses. Cell, 2015, 162, 170-183.	13.5	181
81	Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chemical Biology, 2015, 10, 1604-1609.	1.6	629
82	Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3056-3061.	3.3	66
83	Target profiling of an antimetastatic RAPTA agent by chemical proteomics: relevance to the mode of action. Chemical Science, 2015, 6, 2449-2456.	3.7	127
84	KPC1-Mediated Ubiquitination and Proteasomal Processing of NF-κB1 p105 to p50 Restricts Tumor Growth. Cell, 2015, 161, 333-347.	13.5	89
85	Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling. Nature Methods, 2015, 12, 1055-1057.	9.0	183
86	Gene essentiality and synthetic lethality in haploid human cells. Science, 2015, 350, 1092-1096.	6.0	773
87	Phosphatase and tensin homolog (PTEN) in antigen-presenting cells controls Th17-mediated autoimmune arthritis. Arthritis Research and Therapy, 2015, 17, 230.	1.6	24
88	NOTCH1 activation in breast cancer confers sensitivity to inhibition of SUMOylation. Oncogene, 2015, 34, 3780-3790.	2.6	40
89	The SH2 Domain Regulates c-Abl Kinase Activation by a Cyclin-Like Mechanism and Remodulation of the Hinge Motion. PLoS Computational Biology, 2014, 10, e1003863.	1.5	26
90	IFITs: Emerging Roles as Key Anti-Viral Proteins. Frontiers in Immunology, 2014, 5, 94.	2.2	105

#	Article	IF	CITATIONS
91	Virulence Factor NSs of Rift Valley Fever Virus Recruits the F-Box Protein FBXO3 To Degrade Subunit p62 of General Transcription Factor TFIIH. Journal of Virology, 2014, 88, 3464-3473.	1.5	65
92	Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature, 2014, 508, 222-227.	13.7	336
93	Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity. Cellular Microbiology, 2014, 16, 834-848.	1.1	94
94	Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nature Medicine, 2014, 20, 47-53.	15.2	256
95	<i>MMP13</i> mutations are the cause of recessive metaphyseal dysplasia, Spahr type. American Journal of Medical Genetics, Part A, 2014, 164, 1175-1179.	0.7	14
96	Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nature Communications, 2014, 5, 5360.	5.8	116
97	Identification of Kinase Inhibitor Targets in the Lung Cancer Microenvironment by Chemical and Phosphoproteomics. Molecular Cancer Therapeutics, 2014, 13, 2751-2762.	1.9	21
98	The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity. Nature Chemical Biology, 2014, 10, 768-773.	3.9	157
99	JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia. Nature Genetics, 2014, 46, 1021-1027.	9.4	119
100	The lysine methyltransferase SMYD3 interacts with hepatitis C virus NS5A and is a negative regulator of viral particle production. Virology, 2014, 462-463, 34-41.	1.1	18
101	Comparative functional analysis of the molecular network of 7 selected MLL fusion proteins. Experimental Hematology, 2014, 42, S60.	0.2	0
102	Toward effective sharing of high-dimensional immunology data. Nature Biotechnology, 2014, 32, 755-759.	9.4	11
103	A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF. Oncogene, 2014, 33, 2531-2539.	2.6	29
104	Evaluating the Promiscuous Nature of Tyrosine Kinase Inhibitors Assessed in A431 Epidermoid Carcinoma Cells by Both Chemical- and Phosphoproteomics. ACS Chemical Biology, 2014, 9, 1490-1498.	1.6	18
105	Building and exploring an integrated human kinase network: Global organization and medical entry points. Journal of Proteomics, 2014, 107, 113-127.	1.2	16
106	A1.8â€A dual role of MTOR in the rheumatoid mesenchymal tissue response to inflammation. Annals of the Rheumatic Diseases, 2014, 73, A3.3-A4.	0.5	1
107	Affinity Purification Strategies for Proteomic Analysis of Transcription Factor Complexes. Journal of Proteome Research, 2013, 12, 4018-4027.	1.8	21
108	The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nature Methods, 2013, 10, 730-736.	9.0	1,353

#	Article	IF	CITATIONS
109	A Miniaturized Chemical Proteomic Approach for Target Profiling of Clinical Kinase Inhibitors in Tumor Biopsies. Journal of Proteome Research, 2013, 12, 4005-4017.	1.8	15
110	A reversible gene trap collection empowers haploid genetics in human cells. Nature Methods, 2013, 10, 965-971.	9.0	90
111	Interactome of Two Diverse RNA Granules Links mRNA Localization to Translational Repression in Neurons. Cell Reports, 2013, 5, 1749-1762.	2.9	130
112	Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. New England Journal of Medicine, 2013, 369, 2379-2390.	13.9	1,698
113	Experimental characterization of the human non-sequence-specific nucleic acid interactome. Genome Biology, 2013, 14, R81.	13.9	7
114	Structural basis for viral 5′-PPP-RNA recognition by human IFIT proteins. Nature, 2013, 494, 60-64.	13.7	193
115	A method to resolve the composition of heterogeneous affinity-purified protein complexes assembled around a common protein by chemical cross-linking, gel electrophoresis and mass spectrometry. Nature Protocols, 2013, 8, 75-97.	5.5	27
116	FAM111A Mutations Result in Hypoparathyroidism and Impaired Skeletal Development. American Journal of Human Genetics, 2013, 92, 990-995.	2.6	114
117	Recruitment of the MLL complex via specific interaction of the p30 variant of C/EBPα with Wdr5 is essential for development of acute myeloid leukemia. Experimental Hematology, 2013, 41, S20.	0.2	Ο
118	Elucidating the molecular mechanism of action of cancer drugs in the second decade of the new millennium. Experimental Hematology, 2013, 41, S9.	0.2	0
119	Interactome Networks. , 2013, , 45-63.		5
120	Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nature Methods, 2013, 10, 307-314.	9.0	192
121	Protein interaction networks in innate immunity. Trends in Immunology, 2013, 34, 610-619.	2.9	26
122	Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms. Molecular Systems Biology, 2013, 9, 705.	3.2	42
123	A6.14â€mTOR Directed Mesenchymal Tissue Response to Inflammation in Arthritis. Annals of the Rheumatic Diseases, 2013, 72, A47.1-A47.	0.5	0
124	A Target-Disease Network Model of Second-Generation BCR-ABL Inhibitor Action in Ph+ ALL. PLoS ONE, 2013, 8, e77155.	1.1	15
125	Abstract 5038: Probing network fragilities in neuroblastoma by synergistic drug combinations , 2013, ,		0
126	Cell biology: A key driver of therapeutic innovation. Journal of Cell Biology, 2012, 199, 571-575.	2.3	2

#	Article	IF	CITATIONS
127	PTEN in antigen presenting cells is a master regulator for Th17-mediated autoimmune pathology. Arthritis Research and Therapy, 2012, 14, .	1.6	1
128	A Comparative Proteomic Study of Human Skin Suction Blister Fluid from Healthy Individuals Using Immunodepletion and iTRAQ Labeling. Journal of Proteome Research, 2012, 11, 3715-3727.	1.8	62
129	BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nature Chemical Biology, 2012, 8, 285-293.	3.9	158
130	Plk1-Dependent Phosphorylation of Optineurin Provides a Negative Feedback Mechanism for Mitotic Progression. Molecular Cell, 2012, 45, 553-566.	4.5	77
131	Special issue – modular protein domains. FEBS Letters, 2012, 586, 2571-2571.	1.3	1
132	P120 The cytokine mRNA-interactome – An unbiased approach to identify RNA–protein interactions. Cytokine, 2012, 59, 558.	1.4	0
133	The Growing Arsenal of ATP-Competitive and Allosteric Inhibitors of BCR–ABL. Cancer Research, 2012, 72, 4890-4895.	0.4	73
134	Functional Dissection of Dynamic Molecular Networks in Innate Immunity. Biophysical Journal, 2012, 102, 9a.	0.2	0
135	Mig6 Is a Sensor of EGF Receptor Inactivation that Directly Activates c-Abl to Induce Apoptosis during Epithelial Homeostasis. Developmental Cell, 2012, 23, 547-559.	3.1	47
136	Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML. Nature Chemical Biology, 2012, 8, 905-912.	3.9	96
137	Deconvolution of Targeted Protein–Protein Interaction Maps. Journal of Proteome Research, 2012, 11, 4102-4109.	1.8	8
138	Identifying Core Protein Complexes from Downscaled Tandem Affinity Purifications. Journal of Integrated OMICS, 2012, 2, 55-68.	0.5	4
139	Systems biology analysis of proteinâ€drug interactions. Proteomics - Clinical Applications, 2012, 6, 102-116.	0.8	27
140	Target/s Identification Approaches – Experimental Biological Approaches. RSC Drug Discovery Series, 2012, , 94-110.	0.2	0
141	Viral immune modulators perturb the human molecular network by common and unique strategies. Nature, 2012, 487, 486-490.	13.7	249
142	SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutières syndrome-associated mutations. Human Mutation, 2012, 33, 1116-1122.	1.1	121
143	Compound Immobilization and Drug-Affinity Chromatography. Methods in Molecular Biology, 2012, 803, 25-38.	0.4	10
144	Systems Biology Analysis of Kinase Inhibitor Protein Target Profiles in Leukemia Treatments. Lecture Notes in Computer Science, 2012, , 62-66.	1.0	0

#	Article	IF	CITATIONS
145	Systems medicine and integrated care to combat chronic noncommunicable diseases. Genome Medicine, 2011, 3, 43.	3.6	181
146	Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature, 2011, 478, 76-81.	13.7	469
147	General Statistical Modeling of Data from Protein Relative Expression Isobaric Tags. Journal of Proteome Research, 2011, 10, 2758-2766.	1.8	120
148	Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis. Cell, 2011, 147, 306-319.	13.5	122
149	IFIT1 is an antiviral protein that recognizes 5′-triphosphate RNA. Nature Immunology, 2011, 12, 624-630.	7.0	422
150	Functional Dissection of the TBK1 Molecular Network. PLoS ONE, 2011, 6, e23971.	1.1	110
151	KIT-D816V–independent oncogenic signaling in neoplastic cells in systemic mastocytosis: role of Lyn and Btk activation and disruption by dasatinib and bosutinib. Blood, 2011, 118, 1885-1898.	0.6	64
152	Initial characterization of the human central proteome. BMC Systems Biology, 2011, 5, 17.	3.0	66
153	After the grape rush: Sirtuins as epigenetic drug targets in neurodegenerative disorders. Bioorganic and Medicinal Chemistry, 2011, 19, 3616-3624.	1.4	54
154	Proteomic analysis of human cataract aqueous humour: Comparison of one-dimensional gel LCMS with two-dimensional LCMS of unlabelled and iTRAQ®-labelled specimens. Journal of Proteomics, 2011, 74, 151-166.	1.2	79
155	An Integrated Chemical Biology Approach Identifies Specific Vulnerability of Ewing's Sarcoma to Combined Inhibition of Aurora Kinases A and B. Molecular Cancer Therapeutics, 2011, 10, 1846-1856.	1.9	37
156	Targeting allosteric regulatory modules in oncoproteins: "Drugging the Undruggable― Oncotarget, 2011, 2, 828-829.	0.8	7
157	BCR-ABL SH3-SH2 domain mutations in chronic myeloid leukemia patients on imatinib. Blood, 2010, 116, 3278-3285.	0.6	69
158	Antiinflammatory effects of tumor necrosis factor on hematopoietic cells in a murine model of erosive arthritis. Arthritis and Rheumatism, 2010, 62, 1608-1619.	6.7	64
159	MASPECTRAS 2: An integration and analysis platform for proteomic data. Proteomics, 2010, 10, 2719-2722.	1.3	20
160	A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Nature Structural and Molecular Biology, 2010, 17, 519-527.	3.6	138
161	A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells. Leukemia, 2010, 24, 44-50.	3.3	67
162	A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nature Chemical Biology, 2010, 6, 291-299.	3.9	254

#	Article	IF	CITATIONS
163	Mass Spectrometry and its Applications to Functional Proteomics. , 2010, , 307-323.		0
164	Analysis of TNFR2-mediated functions on osteoclast precursor cells. Annals of the Rheumatic Diseases, 2010, 69, A35-A36.	0.5	2
165	CD14 is a coreceptor of Toll-like receptors 7 and 9. Journal of Experimental Medicine, 2010, 207, 2689-2701.	4.2	181
166	A Computational Approach to Analyze the Mechanism of Action of the Kinase Inhibitor Bafetinib. PLoS Computational Biology, 2010, 6, e1001001.	1.5	23
167	Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity. Cell, 2010, 141, 668-681.	13.5	717
168	Functional Genomic and Proteomic Characterization of Normal and Oncogenic CEBPA Variants In Myeloid Cells. Blood, 2010, 116, 3873-3873.	0.6	0
169	Bcr-Abl Directly Activates Stat5 Independent of Jak2. Blood, 2010, 116, 511-511.	0.6	0
170	Charting the molecular network of the drug target Bcr-Abl. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7414-7419.	3.3	146
171	The TLRâ€independent DNA recognition pathway in murine macrophages: Ligand features and molecular signature. European Journal of Immunology, 2009, 39, 1929-1936.	1.6	31
172	The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). BMC Structural Biology, 2009, 9, 7.	2.3	83
173	Immunosuppression and atypical infections in CML patients treated with dasatinib at $140\hat{a} \in f$ mg daily. European Journal of Clinical Investigation, 2009, 39, 1098-1109.	1.7	92
174	Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia, 2009, 23, 477-485.	3.3	254
175	Target profiling of small molecules by chemical proteomics. Nature Chemical Biology, 2009, 5, 616-624.	3.9	505
176	An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nature Immunology, 2009, 10, 266-272.	7.0	935
177	A biomedical adventurers' guide to navigating between careers in academia and industry. Nature Reviews Molecular Cell Biology, 2009, 10, 884-887.	16.1	0
178	NSs Protein of Rift Valley Fever Virus Induces the Specific Degradation of the Double-Stranded RNA-Dependent Protein Kinase. Journal of Virology, 2009, 83, 4365-4375.	1.5	216
179	The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO Journal, 2008, 27, 2135-2146.	3.5	276
180	Intrinsic differences between the catalytic properties of the oncogenic NUP214-ABL1 and BCR-ABL1 fusion protein kinases. Leukemia, 2008, 22, 2208-2216.	3.3	42

#	Article	IF	CITATIONS
181	Characterization of BCR-ABL deletion mutants from patients with chronic myeloid leukemia. Leukemia, 2008, 22, 1184-1190.	3.3	38
182	Human Proteinpedia enables sharing of human protein data. Nature Biotechnology, 2008, 26, 164-167.	9.4	155
183	A network solution. Nature, 2008, 455, 730-731.	13.7	36
184	Drugs in action. Nature Chemical Biology, 2008, 4, 7-11.	3.9	9
185	Dasatinib inhibits the growth and survival of neoplastic human eosinophils (EOL-1) through targeting of FIP1L1-PDGFRα. Experimental Hematology, 2008, 36, 1244-1253.	0.2	24
186	Finally: The digital, democratic age of scientific abstracts. FEBS Letters, 2008, 582, 1169-1169.	1.3	7
187	The chemokine interleukinâ€8 and the surface activation protein CD69 are markers for Bcr–Abl activity in chronic myeloid leukemia. Molecular Oncology, 2008, 2, 272-281.	2.1	27
188	Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leukemia and Lymphoma, 2008, 49, 615-619.	0.6	233
189	Structural Coupling of SH2-Kinase Domains Links Fes and Abl Substrate Recognition and Kinase Activation. Cell, 2008, 134, 793-803.	13.5	190
190	311 Molecular networks in innate immunity. Cytokine, 2008, 43, 317.	1.4	0
191	The effects of dasatinib on IgE receptor–dependent activation and histamine release in human basophils. Blood, 2008, 111, 3097-3107.	0.6	78
192	The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13283-13288.	3.3	274
193	Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood, 2007, 110, 4055-4063.	0.6	600
194	Vienna special issue: Molecular machines. FEBS Letters, 2007, 581, 2749-2749.	1.3	37
195	The minimum information required for reporting a molecular interaction experiment (MIMIx). Nature Biotechnology, 2007, 25, 894-898.	9.4	274
196	Mass spectrometry–based functional proteomics: from molecular machines to protein networks. Nature Methods, 2007, 4, 807-815.	9.0	223
197	Selective serotonin reuptake inhibitors—A new modality for the treatment of lymphoma/leukaemia?. Biochemical Pharmacology, 2007, 74, 1424-1435.	2.0	28
198	Delineation of a KIT-Independent Oncogenic Pathway in Neoplastic Mast Cells That Involves Lyn and Btk, and Can Be Disrupted by the KIT/Lyn/Btk-Targeting Drug Dasatinib. Blood, 2007, 110, 1541-1541.	0.6	6

#	Article	IF	CITATIONS
199	Systematic Profiling and Novel Targets of the Bcr-Abl Kinase Inhibitors Imatinib, Nilotinib and Dasatinib Blood, 2007, 110, 4542-4542.	0.6	1
200	Characterization of BCR-ABL Deletion Mutants from Patients with Chronic Myeloid Leukemia Blood, 2007, 110, 2936-2936.	0.6	0
201	Mechanisms of Activation of Abl Family Kinases. , 2006, , 1-10.		Ο
202	CytoplasmicListeria monocytogenesstimulates IFN-β synthesis without requiring the adapter protein MAVS. FEBS Letters, 2006, 580, 2341-2346.	1.3	36
203	Organization of the SH3-SH2 Unit in Active and Inactive Forms of the c-Abl Tyrosine Kinase. Molecular Cell, 2006, 21, 787-798.	4.5	192
204	Charting protein complexes, signaling pathways, and networks in the immune system. Immunological Reviews, 2006, 210, 187-207.	2.8	45
205	An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nature Methods, 2006, 3, 1013-1019.	9.0	366
206	Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006, 440, 631-636.	13.7	2,347
207	Src kinase phosphorylates Caspase-8 on Tyr380: a novel mechanism of apoptosis suppression. EMBO Journal, 2006, 25, 1895-1905.	3.5	179
208	Transgenic Mouse Proteomics Identifies New 14-3-3-associated Proteins Involved in Cytoskeletal Rearrangements and Cell Signaling. Molecular and Cellular Proteomics, 2006, 5, 2211-2227.	2.5	130
209	A Subset of Chronic Myeloid Leukemia (CML) Patients on ABL Kinase Inhibitor Therapy Develop Point Mutations outside the BCR-ABL Kinase Domain That Decrease Drug Sensitivity and May Have a Role in Disease Progression Blood, 2006, 108, 2188-2188.	0.6	0
210	NMR Assignment Reveals an α-Helical Fold for the F-Actin Binding Domain of Human Bcr-Abl/c-Abl. Journal of Biomolecular NMR, 2005, 32, 335-335.	1.6	3
211	Structural Basis for the Cytoskeletal Association of Bcr-Abl/c-Abl. Molecular Cell, 2005, 19, 461-473.	4.5	63
212	Systems Biology: Understanding the Biological Mosaic. FEBS Letters, 2005, 579, 1771-1771.	1.3	3
213	Spotlight on…Giulio Superti-Furga. FEBS Letters, 2005, 579, 2253-2253.	1.3	0
214	Structure-Based Assembly of Protein Complexes in Yeast. Science, 2004, 303, 2026-2029.	6.0	367
215	A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nature Cell Biology, 2004, 6, 97-105.	4.6	970
216	Regulation of the c-Abl and Bcr–Abl tyrosine kinases. Nature Reviews Molecular Cell Biology, 2004, 5, 33-44.	16.1	429

#	Article	IF	CITATIONS
217	RhoB and Actin Polymerization Coordinate Src Activation with Endosome-Mediated Delivery to the Membrane. Developmental Cell, 2004, 7, 855-869.	3.1	235
218	Rediscovering the sweet spot in drug discovery. Drug Discovery Today, 2003, 8, 1067-1077.	3.2	179
219	Protein complexes and proteome organization from yeast to man. Current Opinion in Chemical Biology, 2003, 7, 21-27.	2.8	125
220	Regulation of c-Fes Tyrosine Kinase Activity by Coiled-Coil and SH2 Domains:  Analysis with Saccharomyces cerevisiae. Biochemistry, 2003, 42, 3567-3574.	1.2	24
221	A Myristoyl/Phosphotyrosine Switch Regulates c-Abl. Cell, 2003, 112, 845-857.	13.5	404
222	Structural Basis for the Autoinhibition of c-Abl Tyrosine Kinase. Cell, 2003, 112, 859-871.	13.5	762
223	Caspase-Dependent Cleavage of c-Abl Contributes to Apoptosis. Molecular and Cellular Biology, 2003, 23, 2790-2799.	1.1	58
224	ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Research, 2003, 31, 3625-3630.	6.5	555
225	c-Src-Mediated Phosphorylation of hnRNP K Drives Translational Activation of Specifically Silenced mRNAs. Molecular and Cellular Biology, 2002, 22, 4535-4543.	1.1	210
226	Autoinhibition of c-Abl. Cell, 2002, 108, 247-259.	13.5	226
227	High-affinity Src-SH2 ligands which do not activate Tyr527-phosphorylated Src in an experimental in vivo system. Biochemical and Biophysical Research Communications, 2002, 298, 185-192.	1.0	11
228	Phosphorylation of Bruton's tyrosine kinase by c-Abl. Biochemical and Biophysical Research Communications, 2002, 299, 510-515.	1.0	24
229	Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002, 415, 141-147.	13.7	4,509
230	A complex prediction: threeâ€dimensional model of the yeast exosome. EMBO Reports, 2002, 3, 628-635.	2.0	89
231	c-Abl is an effector of Src for growth factor-induced c-myc expression and DNA synthesis. EMBO Journal, 2002, 21, 514-524.	3.5	109
232	Dynamic Coupling between the SH2 and SH3 Domains of c-Src and Hck Underlies Their Inactivation by C-Terminal Tyrosine Phosphorylation. Cell, 2001, 105, 115-126.	13.5	366
233	Phosphorylation and structure-based functional studies reveal a positive and a negative role for the activation loop of the c-Abl tyrosine kinase. Oncogene, 2001, 20, 8075-8084.	2.6	80
234	Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Human Molecular Genetics, 2000, 9, 2223-2229.	1.4	247

#	Article	IF	CITATIONS
235	Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src. Nature Structural Biology, 2000, 7, 281-286.	9.7	95
236	Nuclear tyrosine phosphorylation: the beginning of a map. Biochemical Pharmacology, 2000, 60, 1203-1215.	2.0	47
237	A nuclear tyrosine phosphorylation circuit: c-Jun as an activator and substrate of c-Abl and JNK. EMBO Journal, 2000, 19, 273-281.	3.5	81
238	Regulation of Human c-Abl Tyrosine Kinase Activity in <i>Xenopus</i> Oocytes and Acceleration of Progesterone-Induced G2/M Transition by Oncogenic Forms. Biological Chemistry, 1999, 380, 223-30.	1.2	8
239	Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature, 1999, 401, 926-929.	13.7	394
240	Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO Journal, 1999, 18, 2137-2148.	3.5	393
241	Leucine 255 of Src couples intramolecular interactions to inhibition of catalysis. Nature Structural Biology, 1999, 6, 760-764.	9.7	61
242	An intramolecular SH3-domain interaction regulates c-Abl activity. Nature Genetics, 1998, 18, 280-282.	9.4	206
243	The Five Cleavage-Stage (CS) Histones of the Sea Urchin Are Encoded by a Maternally Expressed Family of Replacement Histone Genes: Functional Equivalence of the CS H1 and Frog H1M (B4) Proteins. Molecular and Cellular Biology, 1997, 17, 1189-1200.	1.1	49
244	The 2.35 å crystal structure of the inactivated form of chicken src: a dynamic molecule with multiple regulatory interactions. Journal of Molecular Biology, 1997, 274, 757-775.	2.0	243
245	Src regulated by C-terminal phosphorylation is monomeric. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3590-3595.	3.3	27
246	Alternative splicing of the human CDC25B tyrosine phosphatase. Possible implications for growth control?. Oncogene, 1997, 14, 2485-2495.	2.6	96
247	The role of the linker between the SH2 domain and catalytic domain in the regulation and function of Src. EMBO Journal, 1997, 16, 7261-7271.	3.5	138
248	Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO Journal, 1997, 16, 706-716.	3.5	373
249	A crystal milestone: The structure of regulated Src. BioEssays, 1997, 19, 447-450.	1.2	24
250	The Fission Yeast <i>pmk1⁺</i> Gene Encodes a Novel Mitogen-Activated Protein Kinase Homolog Which Regulates Cell Integrity and Functions Coordinately with the Protein Kinase C Pathway. Molecular and Cellular Biology, 1996, 16, 6752-6764.	1.1	201
251	The Purification and Characterization of the Catalytic Domain of Src Expressed in Schizosaccharomyces Pombe. Comparison of Unphosphorylated and Tyrosine Phosphorylated Species. FEBS Journal, 1996, 240, 756-764.	0.2	36
252	A functional screen in yeast for regulators and antagonizers of heterologous protein tyrosine kinases. Nature Biotechnology, 1996, 14, 600-605.	9.4	30

#	Article	IF	CITATIONS
253	Analysis of human c-Abl tyrosine kinase activity and regulation in S. pombe. Oncogene, 1996, 12, 1513-20.	2.6	18
254	Structure-function relationships in Src family and related protein tyrosine kinases. BioEssays, 1995, 17, 321-330.	1.2	195
255	Mutational analysis of the Src SH3 domain: the same residues of the ligand binding surface are important for intra- and intermolecular interactions EMBO Journal, 1995, 14, 963-975.	3.5	149
256	Regulation of the Src protein tyrosine kinase. FEBS Letters, 1995, 369, 62-66.	1.3	69
257	Mutational analysis of the Src SH3 domain: the same residues of the ligand binding surface are important for intra- and intermolecular interactions. EMBO Journal, 1995, 14, 963-75.	3.5	58
258	Structural requirements for the efficient regulation of the Src protein tyrosine kinase by Csk. Oncogene, 1995, 11, 2317-29.	2.6	28
259	Csk inhibition of c-Src activity requires both the SH2 and SH3 domains of Src EMBO Journal, 1993, 12, 2625-2634.	3.5	244
260	The Src family of protein tyrosine kinases: regulation and functions. Development (Cambridge), 1993, 119, 57-64.	1.2	29
261	Csk inhibition of c-Src activity requires both the SH2 and SH3 domains of Src. EMBO Journal, 1993, 12, 2625-34.	3.5	83
262	Hormone-dependent transcriptional regulation and cellular transformation by Fos-steroid receptor fusion proteins Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5114-5118.	3.3	97
263	Developmental and tissue-specific regulation of a novel transcription factor of the sea urchin Genes and Development, 1989, 3, 663-675.	2.7	47
264	The testi-specific octamer-binding protein of the sea urchin has a molecular weight of 85 kDa. Nucleic Acids Research, 1989, 17, 7114-7114.	6.5	2
265	The deletion of the distal CCAAT box region of the Al̂³-globin gene in Mack HPFH abolishes the binding of the erythroki specific protein NFE3 and of the CCAAT displacement protein. Nucleic Acids Research, 1989, 17, 6681-6691.	6.5	68
266	The protein CDP, but not CP1, footprints on the CCAAT region of the γ-globin gene in unfractionated B-cell extracts. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1989, 1007, 237-242.	2.4	52
267	The â^'117 mutation in Greek HPFH affects the binding of three nuclear factors to the CCAAT region of the gamma-globin gene EMBO Journal, 1988, 7, 3099-3107.	3.5	133
268	The -117 mutation in Greek HPFH affects the binding of three nuclear factors to the CCAAT region of the gamma-globin gene. EMBO Journal, 1988, 7, 3099-107.	3.5	64
269	Mutually exclusive interaction of the CCAAT-binding factor and of a displacement protein with overlapping sequences of a histone gene promoter. Cell, 1987, 50, 347-359.	13.5	428