Haoxi Ben

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2667531/publications.pdf Version: 2024-02-01

HAOYI REN

#	Article	IF	CITATIONS
1	Promotional effects of sodium and sulfur on light olefins synthesis from syngas over iron-manganese catalyst. Applied Catalysis B: Environmental, 2022, 300, 120716.	20.2	14
2	Effect of Biochar Prepared from Food Waste through Different Thermal Treatment Processes on Crop Growth. Processes, 2021, 9, 276.	2.8	6
3	The preparation and characterization of chemically deuterium incorporated cotton fibers. Cellulose, 2021, 28, 5351.	4.9	3
4	Parametric study of the catalytic fast pyrolysis of rice husk over hierarchical micro-mesoporous composite catalyst in a microwave-heated fluidized bed. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105210.	5.5	9
5	Using microwave assisted organic acid treatment to separate cellulose fiber and lignin from kenaf bast. Industrial Crops and Products, 2021, 171, 113934.	5.2	18
6	A phase change material embedded composite consisting of kapok and hollow PET fibers for dynamic thermal comfort regulation. Industrial Crops and Products, 2020, 158, 112945.	5.2	17
7	A facile and eco-friendly method to extract Apocynum venetum fibers using microwave-assisted ultrasonic degumming. Industrial Crops and Products, 2020, 151, 112443.	5.2	27
8	The production of hydrogen–deuterium exchanged cellulose fibers with exchange-resistant deuterium incorporation. Cellulose, 2020, 27, 6163-6174.	4.9	4
9	Accelerated Aging Process of Bio-Oil Model Compounds: A Mechanism Study. Frontiers in Energy Research, 2020, 8, .	2.3	8
10	Catalytic Fast Pyrolysis of Poly (Ethylene Terephthalate) (PET) with Zeolite and Nickel Chloride. Polymers, 2020, 12, 705.	4.5	53
11	Development of quantitative 13C NMR characterization and simulation of C, H, and O content for pyrolysis oils based on 13C NMR analysis. RSC Advances, 2020, 10, 25918-25928.	3.6	4
12	Effects of Different Conditions on Co-Pyrolysis Behavior of Corn Stover and Polypropylene. Polymers, 2020, 12, 973.	4.5	37
13	Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nature Protocols, 2019, 14, 2627-2647.	12.0	272
14	Utilization of deep eutectic solvent as a degumming protocol for Apocynum venetum bast. Cellulose, 2019, 26, 8047-8057.	4.9	30
15	Impact of CO2 on Pyrolysis Products of Bituminous Coal and Platanus Sawdust. Polymers, 2019, 11, 1370.	4.5	22
16	A Comprehensive Characterization of Pyrolysis Oil from Softwood Barks. Polymers, 2019, 11, 1387.	4.5	43
17	In-depth study on the effect of oxygen-containing functional groups in pyrolysis oil by P-31 NMR. RSC Advances, 2019, 9, 27157-27166.	3.6	5
18	In-situ evaluation for upgrading of biomass model compounds over noble metal catalysts by isotopic tracing and NMR monitoring. Journal of Analytical and Applied Pyrolysis, 2019, 142, 104615.	5.5	1

ΗΑΟΧΙ ΒΕΝ

#	Article	IF	CITATIONS
19	Pyrolytic Behavior of Major Biomass Components in Waste Biomass. Polymers, 2019, 11, 324.	4.5	23
20	Advances in energy systems for valorization of aqueous byproducts generated from hydrothermal processing of biomass and systems thinking. Green Chemistry, 2019, 21, 2518-2543.	9.0	21
21	In-situ evaluation for upgrading of biomass over noble metal catalysts by isotopic tracing and NMR monitoring. Journal of Analytical and Applied Pyrolysis, 2019, 137, 253-258.	5.5	3
22	Molecular dynamic simulation on the oxidation process of coal tar pitch. Fuel, 2019, 242, 50-61.	6.4	23
23	An alkali-free method to manufacture ramie fiber. Textile Reseach Journal, 2019, 89, 3653-3659.	2.2	15
24	Catalytic Upgrading of Biomass Pyrolysis Oxygenates with Vacuum Gas Oil Using a Davison Circulating Riser Reactor. Energy & Fuels, 2018, 32, 1733-1743.	5.1	17
25	Effect of Autohydrolysis Pretreatment Conditions on Sugarcane Bagasse Structures and Product Distribution Resulting from Pyrolysis. Energy Technology, 2018, 6, 640-648.	3.8	15
26	Catalytic fast pyrolysis of bamboo sawdust via a two-step bench scale bubbling fluidized bed/fixed bed reactor: Study on synergistic effect of alkali metal oxides and HZSM-5. Energy Conversion and Management, 2018, 176, 287-298.	9.2	50
27	Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and Fenton oxidation treatment. Cellulose, 2018, 25, 4979-4992.	4.9	39
28	Characterization of Whole Biomasses in Pyridine Based Ionic Liquid at Low Temperature by 31P NMR: An Approach to Quantitatively Measure Hydroxyl Groups in Biomass As Their Original Structures. Frontiers in Energy Research, 2018, 6, .	2.3	14
29	A green degumming process of ramie. Industrial Crops and Products, 2018, 120, 131-134.	5.2	48
30	Lipid Production from Dilute Alkali Corn Stover Lignin by <i>Rhodococcus</i> Strains. ACS Sustainable Chemistry and Engineering, 2017, 5, 2302-2311.	6.7	101
31	Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis. Journal of Analytical and Applied Pyrolysis, 2017, 123, 244-254.	5.5	46
32	Effects of Lignin Structure on Hydrodeoxygenation Reactivity of Pine Wood Lignin to Valuable Chemicals. ACS Sustainable Chemistry and Engineering, 2017, 5, 1824-1830.	6.7	90
33	Solid-State NMR Investigation of Bio-chars Produced from Biomass Components and Whole Biomasses. Bioenergy Research, 2017, 10, 1036-1044.	3.9	9
34	Effect of autohydrolysis pretreatment on biomass structure and the resulting bio-oil from a pyrolysis process. Fuel, 2017, 206, 494-503.	6.4	30
35	Review of NMR Characterization of Pyrolysis Oils. Energy & amp; Fuels, 2016, 30, 6863-6880.	5.1	94
36	In-depth investigation on quantitative characterization of pyrolysis oil by ³¹ P NMR. RSC Advances, 2016, 6, 17567-17573.	3.6	29

ΗΑΟΧΙ ΒΕΝ

#	Article	IF	CITATIONS
37	Application of a Pyroprobe–Deuterium NMR System: Deuterium Tracing and Mechanistic Study of Upgrading Process for Lignin Model Compounds. Energy & Fuels, 2016, 30, 2968-2974.	5.1	12
38	In situ upgrading of whole biomass to biofuel precursors with low average molecular weight and acidity by the use of zeolite mixture. RSC Advances, 2015, 5, 74821-74827.	3.6	11
39	Upgrading biomass pyrolysis vapors over β-zeolites: role of silica-to-alumina ratio. Green Chemistry, 2014, 16, 4891-4905.	9.0	91
40	The use of combination of zeolites to pursue integrated refined pyrolysis oil from kraft lignin. Sustainable Chemical Processes, 2014, 2, .	2.3	8
41	19F NMR spectroscopy for the quantitative analysis of carbonyl groups in bio-oils. RSC Advances, 2014, 4, 17743.	3.6	24
42	Structure Analysis of Pine Bark-, Residue-, and Stem-Derived Light Oil and Its Hydrodeoxygenation Products. Industrial & Engineering Chemistry Research, 2014, 53, 11269-11275.	3.7	6
43	Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds. Bioresource Technology, 2014, 173, 6-10.	9.6	68
44	CHAPTER 8: PYROLYSIS OF BIOMASS TO BIO-OILS. Materials and Energy, 2014, , 191-228.	0.1	0
45	CHAPTER 9: UPGRADE OF BIO-OIL TO BIO-FUEL AND BIO-CHEMICAL. Materials and Energy, 2014, , 229-266.	0.1	2
46	Comparison for the compositions of fast and slow pyrolysis oils by NMR characterization. Bioresource Technology, 2013, 147, 577-584.	9.6	75
47	Hydrodeoxygenation by deuterium gas $\hat{a} \in \hat{a}$ a powerful way to provide insight into the reaction mechanisms. Physical Chemistry Chemical Physics, 2013, 15, 19138.	2.8	13
48	Lignin Pyrolysis Components and Upgrading—Technology Review. Bioenergy Research, 2013, 6, 1183-1204.	3.9	280
49	Production of renewable gasoline from aqueous phase hydrogenation of lignin pyrolysis oil. Fuel, 2013, 103, 1148-1153.	6.4	65
50	Influence of Si/Al Ratio of ZSM-5 Zeolite on the Properties of Lignin Pyrolysis Products. ACS Sustainable Chemistry and Engineering, 2013, 1, 316-324.	6.7	116
51	One step thermal conversion of lignin to the gasoline range liquid products by using zeolites as additives. RSC Advances, 2012, 2, 12892.	3.6	62
52	Torrefaction of Loblolly pine. Green Chemistry, 2012, 14, 72-76.	9.0	99
53	Inâ€Situ NMR Characterization of Pyrolysis Oil during Accelerated Aging. ChemSusChem, 2012, 5, 1687-1693	6.8	60
54	Chemical characterization and water content determination of bio-oils obtained from various biomass species using 31P NMR spectroscopy. Biofuels, 2012, 3, 123-128.	2.4	23

ΗΑΟΧΙ ΒΕΝ

#	Article	IF	CITATIONS
55	Pyrolysis oils from CO2 precipitated Kraft lignin. Green Chemistry, 2011, 13, 3196.	9.0	99
56	Heteronuclear Single-Quantum Correlation–Nuclear Magnetic Resonance (HSQC–NMR) Fingerprint Analysis of Pyrolysis Oils. Energy & Fuels, 2011, 25, 5791-5801.	5.1	93
57	Pyrolysis of Kraft Lignin with Additives. Energy & Fuels, 2011, 25, 4662-4668.	5.1	101
58	NMR Characterization of Pyrolysis Oils from Kraft Lignin. Energy & amp; Fuels, 2011, 25, 2322-2332.	5.1	205