
Neil David Rawlings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/266729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Research, 2017, 45, D190-D199.	14.5	1,358
2	InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 2019, 47, D351-D360.	14.5	1,291
3	The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research, 2018, 46, D624-D632.	14.5	1,234
4	MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 2012, 40, D343-D350.	14.5	1,047
5	MEROPS: the peptidase database. Nucleic Acids Research, 2010, 38, D227-D233.	14.5	786
6	<i>MEROPS</i> : the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 2014, 42, D503-D509.	14.5	782
7	[13] Evolutionary families of metallopeptidases. Methods in Enzymology, 1995, 248, 183-228.	1.0	707
8	Twenty years of the <i>MEROPS</i> database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 2016, 44, D343-D350.	14.5	648
9	New mini- zincin structures provide a minimal scaffold for members of this metallopeptidase superfamily. BMC Bioinformatics, 2014, 15, 1.	2.6	541
10	Evolutionary families of peptidase inhibitors. Biochemical Journal, 2004, 378, 705-716.	3.7	528
11	[2] Families of serine peptidases. Methods in Enzymology, 1994, 244, 19-61.	1.0	506
12	MEROPS: the peptidase database. Nucleic Acids Research, 2007, 36, D320-D325.	14.5	497
13	MEROPS: the peptidase database. Nucleic Acids Research, 2006, 34, D270-D272.	14.5	477
14	MEROPS: the peptidase database. Nucleic Acids Research, 1999, 27, 325-331.	14.5	421
15	MEROPS: the peptidase database. Nucleic Acids Research, 2004, 32, 160D-164.	14.5	355
16	Cloning, Isolation, and Characterization of Mammalian Legumain, an Asparaginyl Endopeptidase. Journal of Biological Chemistry, 1997, 272, 8090-8098.	3.4	314
17	[32] Families of cysteine peptidases. Methods in Enzymology, 1994, 244, 461-486.	1.0	311
18	Genome of the Host-Cell Transforming Parasite Theileria annulata Compared with T. parva. Science, 2005, 309, 131-133.	12.6	285

2

#	Article	IF	CITATIONS
19	Evolution of proteins of the cystatin superfamily. Journal of Molecular Evolution, 1990, 30, 60-71.	1.8	277
20	Genome Sequence of the Tsetse Fly (<i>Glossina morsitans</i>): Vector of African Trypanosomiasis. Science, 2014, 344, 380-386.	12.6	254
21	The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends in Biochemical Sciences, 2003, 28, 234-237.	7.5	209
22	Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. ELife, 2015, 4, e06974.	6.0	198
23	Identification of the active site of legumain links it to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases. FEBS Letters, 1998, 441, 361-365.	2.8	197
24	MEROPS: the protease database. Nucleic Acids Research, 2002, 30, 343-346.	14.5	190
25	Evolutionary Lines of Cysteine Peptidases. Biological Chemistry, 2001, 382, 727-33.	2.5	179
26	Families and Clans of Serine Peptidases. Archives of Biochemistry and Biophysics, 1995, 318, 247-250.	3.0	177
27	Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Research, 2014, 24, 1676-1685.	5.5	176
28	iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Briefings in Bioinformatics, 2019, 20, 638-658.	6.5	166
29	A Primitive Enzyme for a Primitive Cell: The Protease Required for Excystation of Giardia. Cell, 1997, 89, 437-444.	28.9	146
30	[7] Families of aspartic peptidases, and those of unknown catalytic mechanism. Methods in Enzymology, 1995, 248, 105-120.	1.0	131
31	Stem bromelain: Amino acid sequence and implications for weak binding of cystatin. FEBS Letters, 1989, 247, 419-424.	2.8	129
32	The MEROPS Database as a Protease Information System. Journal of Structural Biology, 2001, 134, 95-102.	2.8	124
33	MEROPS: the peptidase database. Nucleic Acids Research, 2000, 28, 323-325.	14.5	109
34	[32] Thimet oligopeptidase and oligopeptidase M or neurolysin. Methods in Enzymology, 1995, 248, 529-556.	1.0	92
35	Tripeptidyl-peptidase I is apparently the CLN2 protein absent in classical late-infantile neuronal ceroid lipofuscinosis. BBA - Proteins and Proteomics, 1999, 1429, 496-500.	2.1	89
36	Asparagine Peptide Lyases. Journal of Biological Chemistry, 2011, 286, 38321-38328.	3.4	89

#	Article	IF	CITATIONS
37	Oligopeptidases, and the Emergence of the Prolyl Oligopeptidase Family. Biological Chemistry Hoppe-Seyler, 1992, 373, 353-360.	1.4	86
38	Structure of membrane glutamate carboxypeptidase. BBA - Proteins and Proteomics, 1997, 1339, 247-252.	2.1	79
39	Peptidase inhibitors in the MEROPS database. Biochimie, 2010, 92, 1463-1483.	2.6	74
40	Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods. Briefings in Bioinformatics, 2019, 20, 2150-2166.	6.5	70
41	The PepSY domain: a regulator of peptidase activity in the microbial environment?. Trends in Biochemical Sciences, 2004, 29, 169-172.	7.5	68
42	The MEROPS batch BLAST: A tool to detect peptidases and their non-peptidase homologues in a genome. Biochimie, 2008, 90, 243-259.	2.6	68
43	Families and clans of cysteine peptidases. Journal of Computer - Aided Molecular Design, 1996, 6, 1-11.	1.0	54
44	Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation. Biochimie, 2016, 122, 5-30.	2.6	54
45	Prokaryote-derived protein inhibitors of peptidases: A sketchy occurrence and mostly unknown function. Biochimie, 2010, 92, 1644-1656.	2.6	47
46	How to use the <scp><i>MEROPS</i></scp> database and website to help understand peptidase specificity. Protein Science, 2021, 30, 83-92.	7.6	44
47	The Baculovirus <i>Autographa californica</i> Nuclear Polyhedrosis Virus Genome Includes a Papain-Like Sequence. Biological Chemistry Hoppe-Seyler, 1992, 373, 1211-1216.	1.4	43
48	Papaya proteinase IV amino acid sequence. FEBS Letters, 1989, 258, 109-112.	2.8	41
49	Using the MEROPS Database for Proteolytic Enzymes and Their Inhibitors and Substrates. Current Protocols in Bioinformatics, 2014, 48, 1.25.1-33.	25.8	39
50	A large and accurate collection of peptidase cleavages in the MEROPS database. Database: the Journal of Biological Databases and Curation, 2009, 2009, bap015-bap015.	3.0	37
51	Types and families of endopeptidases. Biochemical Society Transactions, 1991, 19, 707-715.	3.4	36
52	Managing Peptidases in the Genomic Era. Biological Chemistry, 2003, 384, 873-82.	2.5	36
53	â€~Species' of peptidases. Biological Chemistry, 2007, 388, 1151-7.	2.5	32

54 Introduction: metallopeptidases and their clans. , 2004, , 231-267.

 $\mathbf{31}$

#	Article	IF	CITATIONS
55	Pepsin homologues in bacteria. BMC Genomics, 2009, 10, 437.	2.8	30
56	Origins of peptidases. Biochimie, 2019, 166, 4-18.	2.6	30
57	Genome properties in 2019: a new companion database to InterPro for the inference of complete functional attributes. Nucleic Acids Research, 2019, 47, D564-D572.	14.5	27
58	Structural Analysis of Papain-Like NlpC/P60 Superfamily Enzymes with a Circularly Permuted Topology Reveals Potential Lipid Binding Sites. PLoS ONE, 2011, 6, e22013.	2.5	22
59	FLUSYS: a software package for the collection and analysis of kinetic and scanning data from Perkin-Elmer fluorimeters. Bioinformatics, 1990, 6, 118-119.	4.1	19
60	Fxna, a novel gene differentially expressed in the rat ovary at the time of folliculogenesis, is required for normal ovarian histogenesis. Development (Cambridge), 2007, 134, 945-957.	2.5	18
61	Twenty-five years of nomenclature and classification of proteolytic enzymes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140345.	2.3	18
62	Dipeptidyl-peptidase II is related to lysosomal Pro-X carboxypeptidase. BBA - Proteins and Proteomics, 1996, 1298, 1-3.	2.1	17
63	Structural and Sequence Analysis of Imelysin-Like Proteins Implicated in Bacterial Iron Uptake. PLoS ONE, 2011, 6, e21875.	2.5	17
64	A novel RCE1 isoform is required for H-Ras plasma membrane localization and is regulated by USP17. Biochemical Journal, 2014, 457, 289-300.	3.7	16
65	Bacterial calpains and the evolution of the calpain (C2) family of peptidases. Biology Direct, 2015, 10, 66.	4.6	15
66	Key challenges for the creation and maintenance of specialist protein resources. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1005-1013.	2.6	13
67	An Introduction to Peptidases and the Merops Database. , 2007, , 161-179.		10
68	Introduction: aspartic peptidases and their clans. , 2004, , 3-12.		10
69	Unusual phyletic distribution of peptidases as a tool for identifying potential drug targets. Biochemical Journal, 2007, 401, e5-7.	3.7	8
70	LUD, a new protein domain associated with lactate utilization. BMC Bioinformatics, 2013, 14, 341.	2.6	8
71	Creating a specialist protein resource network: a meeting report for the protein bioinformatics and community resources retreat: Figure 1 Database: the Journal of Biological Databases and Curation, 2015, 2015, bav063.	3.0	8
72	A comparison of Pfam and MEROPS: two databases, one comprehensive, and one specialised. BMC Bioinformatics, 2003, 4, 17.	2.6	7

#	Article	IF	CITATIONS
73	Identification and prioritization of novel uncharacterized peptidases for biochemical characterization. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat022.	3.0	6
74	Thimet oligopeptidase: site-directed mutagenesis disproves previous assumptions about the nature of the catalytic site. FEBS Letters, 1998, 435, 16-20.	2.8	5
75	Potential metal ligands in the insulinase superfamily of endopeptidases. Biochemical Society Transactions, 1991, 19, 289S-289S.	3.4	4
76	Using the MEROPS Database for Investigation of Lysosomal Peptidases, Their Inhibitors, and Substrates. Methods in Molecular Biology, 2017, 1594, 213-226.	0.9	4
77	Evolution of the Thermopsin Peptidase Family (A5). PLoS ONE, 2013, 8, e78998.	2.5	4
78	The first structure in a family of peptidase inhibitors reveals an unusual Ig-like fold. F1000Research, 2013, 2, 154.	1.6	3
79	The first structure in a family of peptidase inhibitors reveals an unusual Ig-like fold. F1000Research, 2013, 2, 154.	1.6	2
80	Structure and computational analysis of a novel protein with metallopeptidase-like and circularly permuted winged-helix-turn-helix domains reveals a possible role in modified polysaccharide biosynthesis. BMC Bioinformatics, 2014, 15, 75.	2.6	1
81	Peptidases, families, and clans. , 2005, , .		0
82	Antarease. , 2013, , 1079-1081.		0
83	Bacteriophage T4 Prohead Endopeptidase. , 2013, , 3560-3562.		0
84	Nonviral Peptidases. , 2021, , 1-17.		0
85	ADAM15 Peptidase. , 2013, , 1122-1125.		0
86	Nonviral Peptidases. , 2021, , 1152-1169.		0
87	Nonâ€viral Peptidases. , 2008, , 876-883.		0