
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2666680/publications.pdf

Version: 2024-02-01

ΔΙΔΝ Π ΔΤΤΙΕ

#	Article	IF	CITATIONS
1	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	21.4	1,034
2	Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Molecular Cell, 2016, 64, 982-992.	9.7	405
3	A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Research, 2008, 18, 706-716.	5.5	320
4	Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. Journal of Lipid Research, 2002, 43, 1899-1907.	4.2	318
5	Energy Metabolic Reprogramming in the Hypertrophied and Early Stage Failing Heart. Circulation: Heart Failure, 2014, 7, 1022-1031.	3.9	233
6	The Mouse Universal Genotyping Array: From Substrains to Subspecies. G3: Genes, Genomes, Genetics, 2016, 6, 263-279.	1.8	199
7	Adipocyte metabolism and obesity. Journal of Lipid Research, 2009, 50, S395-S399.	4.2	178
8	Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes. Cell Reports, 2017, 18, 1739-1750.	6.4	143
9	A Quantitative Map of the Liver Mitochondrial Phosphoproteome Reveals Posttranslational Control of Ketogenesis. Cell Metabolism, 2012, 16, 672-683.	16.2	141
10	Dietary Fructose and Microbiota-Derived Short-Chain Fatty Acids Promote Bacteriophage Production in the Gut Symbiont Lactobacillus reuteri. Cell Host and Microbe, 2019, 25, 273-284.e6.	11.0	126
11	ABCA1: at the nexus of cholesterol, HDL and atherosclerosis. Trends in Biochemical Sciences, 2007, 32, 172-179.	7.5	123
12	Genetic and Genomic Studies of the BTBR ob/ob Mouse Model of Type 2 Diabetes. American Journal of Therapeutics, 2005, 12, 491-498.	0.9	108
13	Causal graphical models in systems genetics: A unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. Annals of Applied Statistics, 2010, 4, 320-339.	1.1	94
14	Please Pass the Chips: Genomic Insights into Obesity and Diabetes. Journal of Nutrition, 2001, 131, 2078-2081.	2.9	89
15	Dual regulation of the LDL receptor—Some clarity and new questions. Cell Metabolism, 2005, 1, 290-292.	16.2	87
16	RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations. Genetics, 2014, 198, 59-73.	2.9	82
17	FoxM1 Is Up-Regulated by Obesity and Stimulates β-Cell Proliferation. Molecular Endocrinology, 2010, 24, 1822-1834.	3.7	81
18	Genetic determinants of gut microbiota composition and bile acid profiles in mice. PLoS Genetics, 2019, 15. e1008073.	3.5	75

#	Article	IF	CITATIONS
19	The Sorting Receptor SorCS1 Regulates Trafficking of Neurexin and AMPA Receptors. Neuron, 2015, 87, 764-780.	8.1	71
20	Analysis of Receptor-Ligand Interactions. Journal of Chemical Education, 1995, 72, 119.	2.3	67
21	Positional Cloning of a Type 2 Diabetes Quantitative Trait Locus; Tomosyn-2, a Negative Regulator of Insulin Secretion. PLoS Genetics, 2011, 7, e1002323.	3.5	67
22	Gene loci associated with insulin secretion in islets from nondiabetic mice. Journal of Clinical Investigation, 2019, 129, 4419-4432.	8.2	60
23	NeuCode Proteomics Reveals Bap1 Regulation of Metabolism. Cell Reports, 2016, 16, 583-595.	6.4	57
24	Genetic Drivers of Pancreatic Islet Function. Genetics, 2018, 209, 335-356.	2.9	54
25	Identification and functional analysis of a naturally occurring E89K mutation in the ABCA1 gene of the WHAM chicken. Journal of Lipid Research, 2002, 43, 1610-1617.	4.2	49
26	Induction of miR-132 and miR-212 Expression by Glucagon-Like Peptide 1 (GLP-1) in Rodent and Human Pancreatic β-Cells. Molecular Endocrinology, 2015, 29, 1243-1253.	3.7	48
27	Downregulation of Carnitine Acyl-Carnitine Translocase by miRNAs 132 and 212 Amplifies Glucose-Stimulated Insulin Secretion. Diabetes, 2014, 63, 3805-3814.	0.6	45
28	BAIAP3, a C2 domain–containing Munc13 protein, controls the fate of dense-core vesicles in neuroendocrine cells. Journal of Cell Biology, 2017, 216, 2151-2166.	5.2	45
29	Pptc7 is an essential phosphatase for promoting mammalian mitochondrial metabolism and biogenesis. Nature Communications, 2019, 10, 3197.	12.8	45
30	Global Identification of Protein Post-translational Modifications in a Single-Pass Database Search. Journal of Proteome Research, 2015, 14, 4714-4720.	3.7	43
31	Islet proteomics reveals genetic variation in dopamine production resulting in altered insulin secretion. Journal of Biological Chemistry, 2018, 293, 5860-5877.	3.4	43
32	A large-scale genome–lipid association map guides lipid identification. Nature Metabolism, 2020, 2, 1149-1162.	11.9	43
33	β3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. Journal of Clinical Investigation, 2022, 132, .	8.2	42
34	The Transcription Factor Nfatc2 Regulates β-Cell Proliferation and Genes Associated with Type 2 Diabetes in Mouse and Human Islets. PLoS Genetics, 2016, 12, e1006466.	3.5	40
35	Modeling Causality for Pairs of Phenotypes in System Genetics. Genetics, 2013, 193, 1003-1013.	2.9	38
36	Increased transport of acetylâ€CoA into the endoplasmic reticulum causes a progeriaâ€like phenotype. Aging Cell, 2018, 17, e12820.	6.7	38

#	Article	IF	CITATIONS
37	FAM13A affects body fat distribution and adipocyte function. Nature Communications, 2020, 11, 1465.	12.8	36
38	Nat1 Deficiency Is Associated with Mitochondrial Dysfunction and Exercise Intolerance in Mice. Cell Reports, 2016, 17, 527-540.	6.4	35
39	Histone chaperone ASF1B promotes human β -cell proliferation via recruitment of histone H3.3. Cell Cycle, 2016, 15, 3191-3202.	2.6	34
40	Targeted Mass Spectrometry Approach Enabled Discovery of <i>O-</i> Glycosylated Insulin and Related Signaling Peptides in Mouse and Human Pancreatic Islets. Analytical Chemistry, 2017, 89, 9184-9191.	6.5	34
41	Intracellular lipid metabolism impairs β cell compensation during diet-induced obesity. Journal of Clinical Investigation, 2018, 128, 1178-1189.	8.2	33
42	Insights into obesity and diabetes at the intersection of mouse and human genetics. Trends in Endocrinology and Metabolism, 2014, 25, 493-501.	7.1	32
43	The Dissection of Expression Quantitative Trait Locus Hotspots. Genetics, 2016, 202, 1563-1574.	2.9	29
44	How mice are indispensable for understanding obesity and diabetes genetics. Current Opinion in Endocrinology, Diabetes and Obesity, 2017, 24, 83-91.	2.3	29
45	ldentification and Correction of Sample Mix-Ups in Expression Genetic Data: A Case Study. G3: Genes, Genomes, Genetics, 2015, 5, 2177-2186.	1.8	25
46	Genetic Architectures of Quantitative Variation in RNA Editing Pathways. Genetics, 2016, 202, 787-798.	2.9	25
47	Unexpected partial correction of metabolic and behavioral phenotypes of Alzheimer's APP/PSEN1 mice by gene targeting of diabetes/Alzheimer's-related Sorcs1. Acta Neuropathologica Communications, 2016, 4, 16.	5.2	24
48	Phosphorylation and Degradation of Tomosyn-2 De-represses Insulin Secretion. Journal of Biological Chemistry, 2014, 289, 25276-25286.	3.4	23
49	Secretion of Recombinant Interleukin-22 by Engineered Lactobacillus reuteri Reduces Fatty Liver Disease in a Mouse Model of Diet-Induced Obesity. MSphere, 2020, 5, .	2.9	23
50	Identification of the Bile Acid Transporter <i>Slco1a6</i> as a Candidate Gene That Broadly Affects Gene Expression in Mouse Pancreatic Islets. Genetics, 2015, 201, 1253-1262.	2.9	22
51	Insig: a significant integrator of nutrient and hormonal signals. Journal of Clinical Investigation, 2004, 113, 1112-1114.	8.2	21
52	Sorting through the extensive and confusing roles of sortilin in metabolic disease. Journal of Lipid Research, 2022, 63, 100243.	4.2	19
53	Exploiting Prophage-Mediated Lysis for Biotherapeutic Release by <i>Lactobacillus reuteri</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	17
54	Perilipin 5 and liver fatty acid binding protein function to restore quiescence in mouse hepatic stellate cells. Journal of Lipid Research, 2018, 59, 416-428.	4.2	16

#	Article	IF	CITATIONS
55	Identification of direct transcriptional targets of NFATC2 that promote Î ² cell proliferation. Journal of Clinical Investigation, 2021, 131, .	8.2	15
56	Reversal of hypertriglyceridemia in diabetic BTBR ob/ob mice does not prevent nephropathy. Laboratory Investigation, 2021, 101, 935-941.	3.7	8
57	Stearoyl-CoA Desaturase Deficiency, Hypercholesterolemia, Cholestasis, and Diabetes. Nutrition Reviews, 2007, 65, S35-S38.	5.8	7
58	Gene Co-Expression Modules and Type 2 Diabetes. Results and Problems in Cell Differentiation, 2011, 52, 47-56.	0.7	6
59	From methylene bridged diindole to carbonyl linked benzimidazoleindole: Development of potent and metabolically stable PCSK9 modulators. European Journal of Medicinal Chemistry, 2020, 206, 112678.	5.5	6
60	Atherosclerosis Modified. Circulation Research, 2001, 89, 102-104.	4.5	6
61	Defending science education against intelligent design: a call to action. Journal of Clinical Investigation, 2006, 116, 1134-1138.	8.2	5
62	Coding variants identified in patients with diabetes alter PICK1 BAR domain function in insulin granule biogenesis. Journal of Clinical Investigation, 2022, 132, .	8.2	5
63	Application of 2D IR Bioimaging: Hyperspectral Images of Formalin-Fixed Pancreatic Tissues and Observation of Slow Protein Degradation. Journal of Physical Chemistry B, 2021, 125, 9517-9525.	2.6	4
64	β Cell–specific deletion of Zfp148 improves nutrient-stimulated β cell Ca2+ responses. JCI Insight, 2022, 7,	5.0	4
65	INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants. Genome Biology, 2021, 22, 241.	8.8	3
66	Recruiting a transcription factor in the liver to prevent atherosclerosis. Journal of Clinical Investigation, 2021, 131, .	8.2	3
67	Introduction to the Thematic Review Series: Adipose Biology. Journal of Lipid Research, 2019, 60, 1646-1647.	4.2	2
68	Identification of sample mix-ups and mixtures in microbiome data in Diversity Outbred mice. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	2
69	Stearoyl-CoA Desaturase Deficiency, Hypercholesterolaemia, Cholestasis and Diabetes. Novartis Foundation Symposium, 0, , 47-57.	1.1	1
70	Combined Expression Trait Correlations and Expression Quantitative Trait Locus Mapping. PLoS Genetics, 2005, preprint, e6.	3.5	1
71	Stearoyl-CoA desaturase deficiency, hypercholesterolaemia, cholestasis and diabetes. Novartis Foundation Symposium, 2007, 286, 47-53; discussion 54-7, 162-3, 196-203.	1.1	1
72	Statistical Methods for Latent Class Quantitative Trait Loci Mapping. Genetics, 2017, 206, 1309-1317.	2.9	0

#	Article	IF	CITATIONS
73	SCD1 is essential for the prevention of hypercholesterolemia and hepatic dysfunction elicited by a very lowâ€fat, high carbohydrate diet. FASEB Journal, 2006, 20, A860.	0.5	0
74	Hunk, a Serine/Threonine Protein Kinase, Regulates Insulin Secretion from Pancreatic Islets. FASEB Journal, 2018, 32, 670.15.	0.5	0