Andreia Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2666132/publications.pdf

Version: 2024-02-01

159585 189892 3,200 115 30 50 citations h-index g-index papers 116 116 116 5178 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel silk fibroin/elastin wound dressings. Acta Biomaterialia, 2012, 8, 3049-3060.	8.3	213
2	Albumin-Based Nanodevices as Drug Carriers. Current Pharmaceutical Design, 2016, 22, 1371-1390.	1.9	134
3	Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Advances, 2013, 3, 17938.	3.6	128
4	Design of liposomal formulations for cell targeting. Colloids and Surfaces B: Biointerfaces, 2015, 136, 514-526.	5.0	126
5	Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1113-1126.	3.3	112
6	Oxidative DNA damage protection and repair by polyphenolic compounds in PC12 cells. European Journal of Pharmacology, 2008, 601, 50-60.	3.5	99
7	Poly(vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Polymer Testing, 2015, 44, 234-241.	4.8	99
8	Chitosan–lignosulfonates sono-chemically prepared nanoparticles: Characterisation and potential applications. Colloids and Surfaces B: Biointerfaces, 2013, 103, 1-8.	5.0	81
9	Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. Journal of Neuroimmunology, 2004, 152, 183-190.	2.3	79
10	Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. International Journal of Pharmaceutics, 2012, 427, 460-466.	5.2	77
11	Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomedical Materials (Bristol), 2013, 8, 065009.	3.3	67
12	Multiple sclerosis: elevated expression of matrix metalloproteinases in blood monocytes. Journal of Autoimmunity, 2001, 16, 463-470.	6.5	66
13	Enhancing Methotrexate Tolerance with Folate Tagged Liposomes in Arthritic Mice. Journal of Biomedical Nanotechnology, 2015, 11, 2243-2252.	1.1	56
14	Human Hair and the Impact of Cosmetic Procedures: A Review on Cleansing and Shape-Modulating Cosmetics. Cosmetics, 2016, 3, 26.	3.3	52
15	Keratins and lipids in ethnic hair. International Journal of Cosmetic Science, 2013, 35, 244-249.	2.6	47
16	Electroactive biomaterial surface engineering effects on muscle cells differentiation. Materials Science and Engineering C, 2018, 92, 868-874.	7. 3	47
17	Ionic-Liquid-Based Electroactive Polymer Composites for Muscle Tissue Engineering. ACS Applied Polymer Materials, 2019, 1, 2649-2658.	4.4	46
18	Fluorescent quantification of melanin. Pigment Cell and Melanoma Research, 2016, 29, 707-712.	3.3	44

#	Article	IF	Citations
19	Effects of Delta1 and Jagged1 on Early Human Hematopoiesis: Correlation with Expression of Notch Signalingâ€Related Genes in CD34 ⁺ Cells. Stem Cells, 2006, 24, 1328-1337.	3.2	43
20	Novel concept of exosome-like liposomes for the treatment of Alzheimer's disease. Journal of Controlled Release, 2021, 336, 130-143.	9.9	43
21	Dioctadecyldimethylammonium:Monoolein Nanocarriers for Efficient <i>in Vitro</i> Gene Silencing. ACS Applied Materials & Diversal Supplied & Diversal Supplied Materials & Diversal Supplied & Diver	8.0	41
22	Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 123-130.	3.3	39
23	Magnetically Activated Electroactive Microenvironments for Skeletal Muscle Tissue Regeneration. ACS Applied Bio Materials, 2020, 3, 4239-4252.	4.6	39
24	DODAB:monoolein-based lipoplexes as non-viral vectors for transfection of mammalian cells. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2440-2449.	2.6	38
25	EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy. PLoS ONE, 2016, 11, e0165419.	2.5	36
26	Upregulation of the apoptosis regulators cFLIP, CD95 and CD95 ligand in peripheral blood mononuclear cells in relapsing–remitting multiple sclerosis. Journal of Neuroimmunology, 2003, 135, 126-134.	2.3	35
27	Peptide Anchor for Folate-Targeted Liposomal Delivery. Biomacromolecules, 2015, 16, 2904-2910.	5.4	34
28	Photocatalytic performance of N-doped TiO2nano-SiO2-HY nanocomposites immobilized over cotton fabrics. Journal of Materials Research and Technology, 2019, 8, 1933-1943.	5.8	34
29	Anti-Inflammatory and Immunoregulatory Action of Sesquiterpene Lactones. Molecules, 2022, 27, 1142.	3.8	34
30	Folic acid-tagged protein nanoemulsions loaded with CORM-2 enhance the survival of mice bearing subcutaneous A20 lymphoma tumors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1077-1083.	3.3	33
31	Biomedical Application, Patent Repository, Clinical Trial and Regulatory Updates on Hydrogel: An Extensive Review. Gels, 2021, 7, 207.	4.5	32
32	Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching. Ultrasonics Sonochemistry, 2014, 21, 774-781.	8.2	31
33	Protein microspheres as suitable devices for piroxicam release. Colloids and Surfaces B: Biointerfaces, 2012, 92, 277-285.	5.0	30
34	Development of Elastin-Like Recombinamer Films with Antimicrobial Activity. Biomacromolecules, 2015, 16, 625-635.	5.4	29
35	Stealth monoolein-based nanocarriers for delivery of siRNA to cancer cells. Acta Biomaterialia, 2015, 25, 216-229.	8.3	28
36	Exosome-like Nanoparticles: A New Type of Nanocarrier. Current Medicinal Chemistry, 2020, 27, 3888-3905.	2.4	28

#	Article	IF	CITATIONS
37	Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion. Acta Biomaterialia, 2017, 47, 50-59.	8.3	27
38	Functionalization of gauzes with liposomes entrapping an anti-inflammatory drug: A strategy to improve wound healing. Reactive and Functional Polymers, 2013, 73, 1328-1334.	4.1	26
39	Liposome and protein based stealth nanoparticles. Faraday Discussions, 2013, 166, 417.	3.2	26
40	Size controlled protein nanoemulsions for active targeting of folate receptor positive cells. Colloids and Surfaces B: Biointerfaces, 2015, 135, 90-98.	5.0	26
41	Development of bioactive films based on chitosan and Cynara cardunculus leaves extracts for wound dressings. International Journal of Biological Macromolecules, 2020, 163, 1707-1718.	7.5	26
42	DODAB:monoolein liposomes containing Candida albicans cell wall surface proteins: A novel adjuvant and delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 190-200.	4.3	25
43	Neutral PEGylated liposomal formulation for efficient folate-mediated delivery of MCL1 siRNA to activated macrophages. Colloids and Surfaces B: Biointerfaces, 2017, 155, 459-465.	5.0	25
44	Protective effect of antigen delivery using monoolein-based liposomes in experimental hematogenously disseminated candidiasis. Acta Biomaterialia, 2016, 39, 133-145.	8.3	24
45	Tunable pDNA/DODAB:MO lipoplexes: The effect of incubation temperature on pDNA/DODAB:MO lipoplexes structure and transfection efficiency. Colloids and Surfaces B: Biointerfaces, 2014, 121, 371-379.	5.0	23
46	Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells. Planta Medica, 2017, 83, 434-444.	1.3	23
47	Surface Charge-Mediated Cell–Surface Interaction on Piezoelectric Materials. ACS Applied Materials & amp; Interfaces, 2020, 12, 191-199.	8.0	23
48	Structural dynamics and physicochemical properties of pDNA/DODAB:MO lipoplexes: Effect of pH and anionic lipids in inverted non-lamellar phases versus lamellar phases. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2555-2567.	2.6	22
49	Design of Novel BSA/Hyaluronic Acid Nanodispersions for Transdermal Pharma Purposes. Molecular Pharmaceutics, 2014, 11, 1479-1488.	4.6	22
50	Keratinâ€based peptide: biological evaluation and strengthening properties on relaxed hair. International Journal of Cosmetic Science, 2012, 34, 338-346.	2.6	21
51	Leukemia inhibitory factor: Recent advances and implications in biotechnology. Cytokine and Growth Factor Reviews, 2020, 52, 25-33.	7.2	21
52	Decreased 4-1BB expression on CD4+CD25high regulatory T cells in peripheral blood of patients with multiple sclerosis. Clinical and Experimental Immunology, 2008, 154, 22-29.	2.6	20
53	Potential of human γ <scp>D</scp> â€crystallin for hair damage repair: insights into the mechanical properties and biocompatibility. International Journal of Cosmetic Science, 2013, 35, 458-466.	2.6	19
54	Redox-dependent induction of antioxidant defenses by phenolic diterpenes confers stress tolerance in normal human skin fibroblasts: Insights on replicative senescence. Free Radical Biology and Medicine, 2015, 83, 262-272.	2.9	19

#	Article	IF	CITATIONS
55	Functionalized protein nanoemulsions by incorporation of chemically modified BSA. RSC Advances, 2015, 5, 4976-4983.	3.6	19
56	Keratinâ€based particles for protection and restoration of hair properties. International Journal of Cosmetic Science, 2018, 40, 408-419.	2.6	19
57	Production of bioactive hepcidin by recombinant DNA tagging with an elastin-like recombinamer. New Biotechnology, 2018, 46, 45-53.	4.4	19
58	Update on Therapeutic Approaches for Rheumatoid Arthritis. Current Medicinal Chemistry, 2016, 23, 2190-2203.	2.4	19
59	Antibacterial and Antifungal Activity of Poly(Lactic Acid)–Bovine Lactoferrin Nanofiber Membranes. Macromolecular Bioscience, 2018, 18, 1700324.	4.1	18
60	Increased Soluble 4-1BB Ligand (4-1BBL) Levels in Peripheral Blood of Patients with Multiple Sclerosis. Scandinavian Journal of Immunology, 2006, 64, 412-419.	2.7	17
61	Single step fabrication of antimicrobial fibre mats from a bioengineered protein-based polymer. Biomedical Materials (Bristol), 2017, 12, 045011.	3.3	17
62	Enzymatic synthesis of poly(catechin)-antibiotic conjugates: an antimicrobial approach for indwelling catheters. Applied Microbiology and Biotechnology, 2015, 99, 637-651.	3.6	16
63	Multifunctional Platform Based on Electroactive Polymers and Silica Nanoparticles for Tissue Engineering Applications. Nanomaterials, 2018, 8, 933.	4.1	16
64	Toxicity in vitro and in Zebrafish Embryonic Development of Gold Nanoparticles Biosynthesized Using Cystoseira Macroalgae Extracts. International Journal of Nanomedicine, 2021, Volume 16, 5017-5036.	6.7	16
65	Lipid-based Nanocarriers for siRNA Delivery: Challenges, Strategies and the Lessons Learned from the DODAX: MO Liposomal System. Current Drug Targets, 2018, 20, 29-50.	2.1	16
66	Monoolein-based nanocarriers for enhanced folate receptor-mediated RNA delivery to cancer cells. Journal of Liposome Research, 2016, 26, 199-210.	3.3	15
67	Protective Ag:TiO2 thin films for pressure sensors in orthopedic prosthesis: the importance of composition, structural and morphological features on the biological response of the coatings. Journal of Materials Science: Materials in Medicine, 2014, 25, 2069-2081.	3.6	14
68	Improved Poly (D,Lâ€lactide) nanoparticlesâ€based formulation for hair follicle targeting. International Journal of Cosmetic Science, 2015, 37, 282-290.	2.6	14
69	Design of polymeric core-shell carriers for combination therapies. Journal of Colloid and Interface Science, 2021, 587, 499-509.	9.4	14
70	Tailoring elastase inhibition with synthetic peptides. European Journal of Pharmacology, 2011, 666, 53-60.	3.5	13
71	Hair Coloration by Gene Regulation: Fact or Fiction?. Trends in Biotechnology, 2015, 33, 707-711.	9.3	13
72	Cyclosporin A-loaded poly(<scp>d,l</scp> -lactide) nanoparticles: a promising tool for treating alopecia. Nanomedicine, 2020, 15, 1459-1469.	3.3	13

#	Article	lF	Citations
73	Biology of Human Hair: Know Your Hair to Control It. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 121-143.	1.1	12
74	Fusion proteins with chromogenic and keratin binding modules. Scientific Reports, 2019, 9, 14044.	3.3	12
75	Effective cytocompatible nanovectors based on serine-derived gemini surfactants and monoolein for small interfering RNA delivery. Journal of Colloid and Interface Science, 2021, 584, 34-44.	9.4	12
76	Protein disulphide isomerase-assisted functionalization of keratin-based matrices. Applied Microbiology and Biotechnology, 2011, 90, 1311-1321.	3.6	11
77	Woundâ€healing evaluation of entrapped active agents into protein microspheres over cellulosic gauzes. Biotechnology Journal, 2012, 7, 1376-1385.	3.5	11
78	Developing scaffolds for tissue engineering using the Ca ²⁺ â€induced cold gelation by an experimental design approach. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 2269-2278.	3.4	11
79	The Notch Ligand Delta-Like 4 Regulates Multiple Stages of Early Hemato-Vascular Development. PLoS ONE, 2012, 7, e34553.	2.5	11
80	Counter ions and constituents combination affect DODAX : MO nanocarriers toxicity in vitro and in vivo. Toxicology Research, 2016, 5, 1244-1255.	2.1	11
81	Avobenzone-loaded and omega-3-enriched lipid formulations for production of UV blocking sunscreen gels and textiles. Journal of Molecular Liquids, 2021, 342, 116965.	4.9	11
82	Sonochemical Proteinaceous Microspheres for Wound Healing. Advances in Experimental Medicine and Biology, 2012, 733, 155-164.	1.6	10
83	The activity of LE10 peptide on biological membranes using molecular dynamics, in vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces, 2013, 106, 240-247.	5.0	10
84	Phosphorylated Silk Fibroin Matrix for Methotrexate Release. Molecular Pharmaceutics, 2015, 12, 75-86.	4.6	10
85	Albumin/asparaginase capsules prepared by ultrasound to retain ammonia. Applied Microbiology and Biotechnology, 2016, 100, 9499-9508.	3. 6	10
86	Nanotechnology Solutions for Controlled Cytokine Delivery: An Applied Perspective. Applied Sciences (Switzerland), 2020, 10, 7098.	2.5	10
87	Decreased levels of CD95 and caspase-8 mRNA in multiple sclerosis patients with gadolinium-enhancing lesions on MRI. Neuroscience Letters, 2003, 352, 101-104.	2.1	9
88	Novel nitrogen compounds enhance protection and repair of oxidative DNA damage in a neuronal cell model: Comparison with quercetin. Chemico-Biological Interactions, 2009, 181, 328-337.	4.0	9
89	BSA/HSA ratio modulates the properties of Ca2+-induced cold gelation scaffolds. International Journal of Biological Macromolecules, 2016, 89, 535-544.	7.5	9
90	Assessment of liposome disruption to quantify drug delivery in vitro. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 163-167.	2.6	9

#	Article	IF	Citations
91	Protein-Based Films Functionalized with a Truncated Antimicrobial Peptide Sequence Display Broad Antimicrobial Activity. ACS Biomaterials Science and Engineering, 2021, 7, 451-461.	5.2	9
92	Understanding Myoblast Differentiation Pathways When Cultured on Electroactive Scaffolds through Proteomic Analysis. ACS Applied Materials & Samp; Interfaces, 2022, 14, 26180-26193.	8.0	9
93	Phosphorylation of silk fibroins improves the cytocompatibility of silk fibroin derived materials: A platform for the production of tuneable material. Biotechnology Journal, 2014, 9, 1267-1278.	3.5	8
94	A biologically active delivery material with dried-rehydrated vesicles containing the anti-inflammatory diclofenac for potential wound healing. Journal of Liposome Research, 2016, 26, 269-275.	3.3	8
95	Mechanisms of Action of Curcumin on Aging. , 2016, , 491-511.		7
96	Role of counter-ion and helper lipid content in the design and properties of nanocarrier systems: a biophysical study in 2D and 3D lipid assemblies. RSC Advances, 2016, 6, 47730-47740.	3.6	7
97	<i>In vitro</i> induction of melanin synthesis and extrusion by tamoxifen. International Journal of Cosmetic Science, 2013, 35, 368-374.	2.6	6
98	Proteinâ€based nanoformulations for αâ€tocopherol encapsulation. Engineering in Life Sciences, 2017, 17, 523-527.	3.6	6
99	Biocompatible thermosensitive nanostructures and hydrogels of an amino acid-derived surfactant and hydroxyethyl cellulose polymers. Journal of Molecular Liquids, 2021, 322, 114540.	4.9	6
100	Formation of catanionic vesicles by threonine-derived surfactants and gemini surfactants based on conventional or serine-derived headgroups: designing versatile and cytocompatible nanocarriers. Soft Matter, 2021, 17, 7099-7110.	2.7	6
101	Portrayal of the Notch System in Embryonic Stem Cell-Derived Embryoid Bodies. Cells Tissues Organs, 2011, 193, 239-252.	2.3	5
102	Fractionation of Cynara cardunculus ethanolic extracts using diananofiltration. Separation and Purification Technology, 2021, 256, 117856.	7.9	4
103	Combined Inhibition of FOSL-1 and YAP Using siRNA-Lipoplexes Reduces the Growth of Pancreatic Tumor. Cancers, 2022, 14, 3102.	3.7	4
104	BSA/ASN/Pol407 nanoparticles for acute lymphoblastic leukemia treatment. Biochemical Engineering Journal, 2019, 141, 80-88.	3.6	3
105	Stimuliâ€Sensitive Selfâ€Assembled Tubules Based on Lysineâ€Derived Surfactants for Delivery of Antimicrobial Proteins. Chemistry - A European Journal, 2021, 27, 692-704.	3.3	3
106	Assessment of a Protease Inhibitor Peptide for Anti-Ageing. Protein and Peptide Letters, 2015, 22, 1041-1049.	0.9	3
107	pH-sensitive nanoliposomes for passive and CXCR-4-mediated marine yessotoxin delivery for cancer therapy. Nanomedicine, 2022, 17, 717-739.	3.3	3
108	Monoolein as helper lipid for non-viral transfection in mammals. Journal of Controlled Release, 2010, 148, e91-e92.	9.9	2

#	Article	IF	Citations
109	Graphene-Based Nanosystems: Versatile Nanotools for Theranostics and Bioremediation. , 0, , .		2
110	Acute ecotoxicity assessment of a covalent organic framework. Environmental Science: Nano, 2021, 8, 1680-1689.	4.3	2
111	Decreased levels of CD95 and caspase-8 mRNA in multiple sclerosis patients with gadolinium-enhancing lesions on MRI. Neuroscience Letters, 2003, 352, 101-101.	2.1	1
112	Photonic modulation of epidermal growth factor receptor halts receptor activation and cancer cell migration. Journal of Biophotonics, 2018, 11, e201700323.	2.3	1
113	Absence of Light Exposure Increases Pathogenicity of Pseudomonas aeruginosa Pneumonia-Associated Clinical Isolates. Biology, 2021, 10, 837.	2.8	1
114	Photonic modulation of EGFR: 280nm low level light arrests cancer cell activation and migration. , $2017, \dots$		0
115	Gene Silencing by siRNA Nanoparticles Synthesized via Sonochemical Method. Journal of Nanomedicine & Nanotechnology, 2014, 05, .	1.1	0