Hao Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2666069/publications.pdf Version: 2024-02-01

HAO CAI

#	Article	IF	CITATIONS
1	Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environmental Research Letters, 2012, 7, 045905.	5.2	379
2	Cellulosic ethanol: status and innovation. Current Opinion in Biotechnology, 2017, 45, 202-211.	6.6	316
3	Life-cycle analysis of bio-based aviation fuels. Bioresource Technology, 2013, 150, 447-456.	9.6	118
4	Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21968-21977.	7.1	110
5	Energy Efficiency and Greenhouse Gas Emission Intensity of Petroleum Products at U.S. Refineries. Environmental Science & Technology, 2014, 48, 7612-7624.	10.0	103
6	Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration. Energy and Environmental Science, 2018, 11, 2904-2918.	30.8	95
7	An assessment of the potential products and economic and environmental impacts resulting from a billion ton bioeconomy. Biofuels, Bioproducts and Biorefining, 2017, 11, 110-128.	3.7	71
8	Wells to wheels: water consumption for transportation fuels in the United States. Energy and Environmental Science, 2016, 9, 787-802.	30.8	67
9	Carbon footprint of global natural gas supplies to China. Nature Communications, 2020, 11, 824.	12.8	54
10	Life ycle analysis of integrated biorefineries with coâ€production of biofuels and bioâ€based chemicals: coâ€product handling methods and implications. Biofuels, Bioproducts and Biorefining, 2018, 12, 815-833.	3.7	53
11	Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels. Environmental Science & Technology, 2015, 49, 8219-8227.	10.0	51
12	Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States. Biotechnology for Biofuels, 2013, 6, 141.	6.2	49
13	Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective. Environmental Science & Technology, 2021, 55, 6944-6956.	10.0	38
14	Environmental, Economic, and Scalability Considerations and Trends of Selected Fuel Economy-Enhancing Biomass-Derived Blendstocks. ACS Sustainable Chemistry and Engineering, 2018, 6, 561-569.	6.7	28
15	Techno-economic Analysis and Life-Cycle Analysis of Renewable Diesel Fuels Produced with Waste Feedstocks. ACS Sustainable Chemistry and Engineering, 2022, 10, 382-393.	6.7	28
16	Life cycle assessment of fuel ethanol produced from soluble sugar in sweet sorghum stalks in North China. Journal of Cleaner Production, 2017, 161, 335-344.	9.3	24
17	Future private car stock in China: current growth pattern and effects of car sales restriction. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 289-306.	2.1	23
18	Techno-Economic Analysis and Life-Cycle Analysis of Two Light-Duty Bioblendstocks: Isobutanol and Aromatic-Rich Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2018, 6, 8790-8800.	6.7	18

ΗΑΟ CΑΙ

#	Article	IF	CITATIONS
19	Consideration of Black Carbon and Primary Organic Carbon Emissions in Life-Cycle Analysis of Greenhouse Gas Emissions of Vehicle Systems and Fuels. Environmental Science & Technology, 2014, 48, 12445-12453.	10.0	16
20	Whole-building life-cycle analysis with a new GREET® tool: Embodied greenhouse gas emissions and payback period of a LEED-Certified library. Building and Environment, 2022, 209, 108664.	6.9	16
21	Co-optimization of Heavy-Duty Fuels and Engines: Cost Benefit Analysis and Implications. Environmental Science & Technology, 2019, 53, 12904-12913.	10.0	14
22	Dynamic life-cycle carbon analysis for fast pyrolysis biofuel produced from pine residues: implications of carbon temporal effects. Biotechnology for Biofuels, 2021, 14, 191.	6.2	14
23	Environmental, Economic, and Scalability Considerations of Selected Bio-Derived Blendstocks for Mixing-Controlled Compression Ignition Engines. ACS Sustainable Chemistry and Engineering, 2022, 10, 6699-6712.	6.7	13
24	Dynamic Life-Cycle Analysis of Fast Pyrolysis Biorefineries: Impacts of Feedstock Moisture Content and Particle Size. ACS Sustainable Chemistry and Engineering, 2020, 8, 6211-6221.	6.7	11