Borjana Arsova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2665693/publications.pdf

Version: 2024-02-01

20 1,762 14
papers citations h-inc

14 21 h-index g-index

28 28 all docs citations

28 times ranked 3013 citing authors

#	Article	IF	CITATIONS
1	Modulators or facilitators? Roles of lipids in plant root–microbe interactions. Trends in Plant Science, 2022, 27, 180-190.	8.8	45
2	The molecular basis of zinc homeostasis in cereals. Plant, Cell and Environment, 2022, 45, 1339-1361.	5.7	14
3	Root Growth and Architecture of Wheat and Brachypodium Vary in Response to Algal Fertilizer in Soil and Solution. Agronomy, 2022, 12, 285.	3.0	4
4	N-dependent dynamics of root growth and nitrate and ammonium uptake are altered by the bacterium <i>Herbaspirillum seropedicae</i> in the cereal model <i>Brachypodium distachyon</i> Journal of Experimental Botany, 2022, 73, 5306-5321.	4.8	11
5	Isolation of Novel Xanthomonas Phages Infecting the Plant Pathogens X. translucens and X. campestris. Viruses, 2022, 14, 1449.	3.3	6
6	Time-resolution of the shoot and root growth of the model cereal Brachypodium in response to inoculation with Azospirillum bacteria at low phosphorus and temperature. Plant Growth Regulation, 2021, 93, 149-162.	3.4	10
7	The Metabolic Response of Brachypodium Roots to the Interaction with Beneficial Bacteria Is Affected by the Plant Nutritional Status. Metabolites, 2021, 11, 358.	2.9	8
8	Transcriptional regulation of <scp><i>ZIP</i></scp> genes is independent of local zinc status in Brachypodium shoots upon zinc deficiency and resupply. Plant, Cell and Environment, 2021, 44, 3376-3397.	5.7	9
9	Dynamics in plant roots and shoots minimize stress, save energy and maintain water and nutrient uptake. New Phytologist, 2020, 225, 1111-1119.	7.3	37
10	Energy costs of salt tolerance in crop plants. New Phytologist, 2020, 225, 1072-1090.	7.3	284
11	MapMan4: A Refined Protein Classification and Annotation Framework Applicable to Multi-Omics Data Analysis. Molecular Plant, 2019, 12, 879-892.	8.3	353
12	Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass. New Phytologist, 2019, 222, 1149-1160.	7.3	55
13	Plant genome and transcriptome annotations: from misconceptions to simple solutions. Briefings in Bioinformatics, 2018, 19, bbw135.	6.5	62
14	Monitoring of Plant Protein Post-translational Modifications Using Targeted Proteomics. Frontiers in Plant Science, 2018, 9, 1168.	3.6	41
15	Evolution of the Phospho <i>enol</i> pyruvate Carboxylase Protein Kinase Family in C3 and C4 Â <i>Flaveria</i> spp. À Â. Plant Physiology, 2014, 165, 1076-1091.	4.8	23
16	The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 2014, 46, 1034-1038.	21.4	391
17	Precision, Proteome Coverage, and Dynamic Range of Arabidopsis Proteome Profiling Using 15N Metabolic Labeling and Label-free Approaches. Molecular and Cellular Proteomics, 2012, 11, 619-628.	3 . 8	16
18	The use of heavy nitrogen in quantitative proteomics experiments in plants. Trends in Plant Science, 2012, 17, 102-112.	8.8	32

#	Article	IF	CITATIONS
19	Current status of the plant phosphorylation site database PhosPhAt and its use as a resource for molecular plant physiology. Frontiers in Plant Science, 2012, 3, 132.	3.6	16
20	Plastidial Thioredoxin $\langle i\rangle z\langle i\rangle$ Interacts with Two Fructokinase-Like Proteins in a Thiol-Dependent Manner: Evidence for an Essential Role in Chloroplast Development in $\langle i\rangle$ Arabidopsis $\langle i\rangle$ and $\langle i\rangle$ Nicotiana benthamiana $\langle i\rangle$ Â Â. Plant Cell, 2010, 22, 1498-1515.	6.6	281