## Peter A Doris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2665472/publications.pdf Version: 2024-02-01



DETED A DODIS

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | mRatBN7.2: familiar and unfamiliar features of a new rat genome reference assembly. Physiological<br>Genomics, 2022, 54, 251-260.                                                                      | 2.3 | 7         |
| 2  | Genomics and Inflammation in Cardiovascular Disease. , 2021, 11, 2433-2454.                                                                                                                            |     | 4         |
| 3  | Emerging Insights Into Chronic Renal Disease Pathogenesis in Hypertension From Human and Animal<br>Genomic Studies. Hypertension, 2021, 78, 1689-1700.                                                 | 2.7 | 3         |
| 4  | Combining Neprilysin Inhibitor With AT2R Agonist Is Superior to Combination With AT1R Blocker in Providing Reno-Protection in Obese Rats. Frontiers in Pharmacology, 2021, 12, 778953.                 | 3.5 | 1         |
| 5  | Pulling the Hood off Genetic Susceptibility to Hypertensive Renal Disease. Journal of the American<br>Society of Nephrology: JASN, 2020, 31, 667-668.                                                  | 6.1 | 1         |
| 6  | Stim1 Polymorphism Disrupts Immune Signaling and Creates Renal Injury in Hypertension. Journal of the American Heart Association, 2020, 9, e014142.                                                    | 3.7 | 16        |
| 7  | Natural genetic variation in Stim1 creates stroke in the spontaneously hypertensive rat. Genes and Immunity, 2020, 21, 182-192.                                                                        | 4.1 | 6         |
| 8  | Germ-line genetic variation in the immunoglobulin heavy chain creates stroke susceptibility in the spontaneously hypertensive rat. Physiological Genomics, 2019, 51, 578-585.                          | 2.3 | 13        |
| 9  | Susceptibility to Hypertensive Renal Disease in the Spontaneously Hypertensive Rat Is Influenced by 2<br>Loci Affecting Blood Pressure and Immunoglobulin Repertoire. Hypertension, 2018, 71, 700-708. | 2.7 | 15        |
| 10 | Increased susceptibility to hypertensive renal disease in spontaneously hypertensive rats due to a mutation in Stim1. FASEB Journal, 2018, 32, 716.20.                                                 | 0.5 | 0         |
| 11 | Renal inflammation and injury are associated with lymphangiogenesis in hypertension. American<br>Journal of Physiology - Renal Physiology, 2017, 312, F861-F869.                                       | 2.7 | 35        |
| 12 | Genetics of hypertension: an assessment of progress in the spontaneously hypertensive rat.<br>Physiological Genomics, 2017, 49, 601-617.                                                               | 2.3 | 55        |
| 13 | Genetic Control of Serum Marinobufagenin in the Spontaneously Hypertensive Rat and the Relationship to Blood Pressure. Journal of the American Heart Association, 2017, 6, .                           | 3.7 | 1         |
| 14 | Mycophenolate mofetil prevents cerebrovascular injury in stroke-prone spontaneously hypertensive rats. Physiological Genomics, 2017, 49, 132-140.                                                      | 2.3 | 8         |
| 15 | Defective Store-Operated Calcium Entry Causes Partial Nephrogenic Diabetes Insipidus. Journal of the<br>American Society of Nephrology: JASN, 2016, 27, 2035-2048.                                     | 6.1 | 32        |
| 16 | Hypertensive Renal Injury Is Associated With Gene Variation Affecting Immune Signaling. Circulation:<br>Cardiovascular Genetics, 2014, 7, 903-910.                                                     | 5.1 | 16        |
| 17 | Hypertensive renal disease. Journal of Hypertension, 2013, 31, 2050-2059.                                                                                                                              | 0.5 | 32        |
| 18 | Chronic Angiotensin II Infusion Drives Extensive Aldosterone-Independent Epithelial Na <sup>+</sup><br>Channel Activation. Hypertension, 2013, 62, 1111-1122.                                          | 2.7 | 61        |

Peter A Doris

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mendelian and trans-generational inheritance in hypertensive renal disease. Annals of Medicine, 2012,<br>44, S65-S73.                                                                                             | 3.8 | 8         |
| 20 | Genetic susceptibility to hypertensive renal disease. Cellular and Molecular Life Sciences, 2012, 69, 3751-3763.                                                                                                  | 5.4 | 4         |
| 21 | The Genetics of Blood Pressure and Hypertension: The Role of Rare Variation. Cardiovascular Therapeutics, 2011, 29, 37-45.                                                                                        | 2.5 | 35        |
| 22 | Immunoglobulin Locus Associates with Serum IgG Levels and Albuminuria. Journal of the American<br>Society of Nephrology: JASN, 2011, 22, 881-889.                                                                 | 6.1 | 12        |
| 23 | High-Resolution Identity by Descent Mapping Uncovers the Genetic Basis for Blood Pressure<br>Differences Between Spontaneously Hypertensive Rat Lines. Circulation: Cardiovascular Genetics, 2011,<br>4, 223-231. | 5.1 | 28        |
| 24 | Genome-Wide Identification of Allelic Expression in Hypertensive Rats. Circulation: Cardiovascular Genetics, 2009, 2, 106-115.                                                                                    | 5.1 | 13        |
| 25 | Sodium Pumps. , 2007, , 213-222.                                                                                                                                                                                  |     | 0         |
| 26 | The Transcribed Genome and the Heritable Basis of Essential Hypertension. Cardiovascular Toxicology, 2005, 5, 095-108.                                                                                            | 2.7 | 6         |
| 27 | Regulation of adrenocortical cardiotonic steroid production by dopamine and PKA signaling.<br>Frontiers in Bioscience - Landmark, 2005, 10, 2489.                                                                 | 3.0 | 8         |
| 28 | Combined Genealogical, Mapping, and Expression Approaches to Identify Spontaneously Hypertensive<br>Rat Hypertension Candidate Genes. Hypertension, 2005, 45, 698-704.                                            | 2.7 | 24        |
| 29 | Polymorphism of the Soluble Epoxide Hydrolase Is Associated With Coronary Artery Calcification in African-American Subjects. Circulation, 2004, 109, 335-339.                                                     | 1.6 | 140       |
| 30 | Polymorphism in Soluble Epoxide Hydrolase and Blood Pressure in Spontaneously Hypertensive Rats.<br>Hypertension, 2002, 40, 485-490.                                                                              | 2.7 | 60        |
| 31 | Hypertension Genetics, Single Nucleotide Polymorphisms, and the Common Disease:Common Variant<br>Hypothesis. Hypertension, 2002, 39, 323-331.                                                                     | 2.7 | 150       |
| 32 | The Effect That Genotyping Errors Have on the Robustness of Common Linkage-Disequilibrium<br>Measures. American Journal of Human Genetics, 2001, 68, 1447-1456.                                                   | 6.2 | 110       |
| 33 | G-Protein β3 Subunit and α-Adducin Polymorphisms and Risk of Subclinical and Clinical Stroke. Stroke, 2001, 32, 822-829.                                                                                          | 2.0 | 83        |
| 34 | High-throughput multiplex SNP genotyping with MALDI-TOF mass spectrometry: Practice, problems and promise. Human Mutation, 2001, 17, 296-304.                                                                     | 2.5 | 137       |
| 35 | Use of single nucleotide polymorphisms for gene discovery in hypertension. Current Hypertension Reports, 2000, 2, 23-31.                                                                                          | 3.5 | 4         |
| 36 | Cyclophilin B Expression in Renal Proximal Tubules of Hypertensive Rats. Hypertension, 2000, 35, 958-964.                                                                                                         | 2.7 | 13        |

Peter A Doris

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mammalian Bufadienolide Is Synthesized From Cholesterol in the Adrenal Cortex by a Pathway That Is<br>Independent of Cholesterol Side-Chain Cleavage. Hypertension, 2000, 36, 442-448.                               | 2.7 | 67        |
| 38 | Arterial Responses <i>in vitro </i> and Plasma Digoxin Immunoreactivity after Losartan and Enalapril<br>Treatments in Experimental Hypertension. Basic and Clinical Pharmacology and Toxicology, 2000, 86,<br>36-43. | 0.0 | 1         |
| 39 | Circulating bufodienolide and cardenolide sodium pump inhibitors in preeclampsia. Journal of<br>Hypertension, 1999, 17, 1179-1187.                                                                                   | 0.5 | 162       |
| 40 | Endogenous Sodium Pump Inhibitors and Blood Pressure Regulation: An Update on Recent Progress.<br>Experimental Biology and Medicine, 1998, 218, 156-167.                                                             | 2.4 | 43        |
| 41 | Rapid Quantification of Gene Expression by Competitive RT-PCR and Ion-Pair Reversed-Phase HPLC.<br>BioTechniques, 1996, 20, 250-257.                                                                                 | 1.8 | 53        |
| 42 | Analysis of Plasma Angiotensins by Reversed Phase HPLC and Radioimmunoassay. Journal of Liquid<br>Chromatography and Related Technologies, 1985, 8, 2017-2034.                                                       | 1.0 | 9         |
| 43 | Sodium and Hypertension: Effect of Dietary Calcium Supplementation on Blood Pressure. Clinical and Experimental Hypertension, 1985, 7, 1441-1456.                                                                    | 0.3 | 6         |
| 44 | Central Cardiovascular Regulation and the Role of Vasopressin: A Review. Clinical and Experimental Hypertension, 1984, 6, 2197-2217.                                                                                 | 0.3 | 5         |