
Pablo C Manrique-Saide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2665147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasites and Vectors, 2016, 9, 67.	2.5	99
2	Ecological, biological and social dimensions of dengue vector breeding in five urban settings of Latin America: a multi-country study. BMC Infectious Diseases, 2014, 14, 38.	2.9	96
3	The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state, Mexico. Pesticide Biochemistry and Physiology, 2013, 107, 226-234.	3.6	63
4	Indoor Resting Behavior of <i>Aedes aegypti</i> (Diptera: Culicidae) in Acapulco, Mexico. Journal of Medical Entomology, 2017, 54, tjw203.	1.8	61
5	Spatio-temporal coherence of dengue, chikungunya and Zika outbreaks in Merida, Mexico. PLoS Neglected Tropical Diseases, 2018, 12, e0006298.	3.0	60
6	Use of Insecticide-Treated House Screens to Reduce Infestations of Dengue Virus Vectors, Mexico. Emerging Infectious Diseases, 2015, 21, 308-311.	4.3	55
7	Experimental evaluation of the impact of household aerosolized insecticides on pyrethroid resistant Aedes aegypti. Scientific Reports, 2018, 8, 12535.	3.3	50
8	Deltamethrin resistance in Aedes aegypti results in treatment failure in Merida, Mexico. PLoS Neglected Tropical Diseases, 2017, 11, e0005656.	3.0	47
9	Dengue vector management using insecticide treated materials and targeted interventions on productive breeding-sites in Guatemala. BMC Public Health, 2012, 12, 931.	2.9	44
10	Long-lasting insecticide-treated house screens and targeted treatment of productive breeding-sites for dengue vector control in Acapulco, Mexico. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 106-115.	1.8	41
11	Restoration of pyrethroid susceptibility in a highly resistant <i>Aedes aegypti</i> population. Biology Letters, 2018, 14, 20180022.	2.3	35
12	Community effectiveness of copepods for dengue vector control: systematic review. Tropical Medicine and International Health, 2015, 20, 685-706.	2.3	32
13	Identifying urban hotspots of dengue, chikungunya, and Zika transmission in Mexico to support risk stratification efforts: a spatial analysis. Lancet Planetary Health, The, 2021, 5, e277-e285.	11.4	32
14	Efficacy of novel indoor residual spraying methods targeting pyrethroid-resistant Aedes aegypti within experimental houses. PLoS Neglected Tropical Diseases, 2019, 13, e0007203.	3.0	31
15	Designing effective control of dengue with combined interventions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3319-3325.	7.1	29
16	House screening with insecticide-treated netting provides sustained reductions in domestic populations of Aedes aegypti in Merida, Mexico. PLoS Neglected Tropical Diseases, 2018, 12, e0006283.	3.0	29
17	Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico. PLoS Neglected Tropical Diseases, 2022, 16, e0010324.	3.0	29
18	Relative abundances of sandfly species (Diptera: Phlebotominae) in two villages in the same area of Campeche, in southern Mexico. Annals of Tropical Medicine and Parasitology, 2005, 99, 193-201.	1.6	26

#	Article	IF	CITATIONS
19	Rapid Detection of <i>Trypanosoma cruzi</i> in Human Serum by Use of an Immunochromatographic Dipstick Test. Journal of Clinical Microbiology, 2010, 48, 3003-3007.	3.9	26
20	Evidence of vertical transmission and co-circulation of chikungunya and dengue viruses in field populations ofAedes aegypti(L.) from Guerrero, Mexico: TableA1 Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 110, trv106.	1.8	26
21	An Epidemiological Study of Intestinal Parasites of Dogs from Yucatan, Mexico, and Their Risk to Public Health. Vector-Borne and Zoonotic Diseases, 2011, 11, 1141-1144.	1.5	25
22	Is routine dengue vector surveillance in central Brazil able to accurately monitor the <i>Aedes aegypti</i> population? Results from a pupal productivity survey. Tropical Medicine and International Health, 2011, 16, 1143-1150.	2.3	25
23	An Assessment of the Importance of Subsurface Catch Basins for <i>Aedes aegypti</i> Adult Production During the Dry Season in a Neighborhood of Merida, Mexico. Journal of the American Mosquito Control Association, 2013, 29, 164-167.	0.7	25
24	Incrimination of the mosquito, <i>Aedes taeniorhynchus</i> , as the primary vector of heartworm, <i>Dirofilaria immitis</i> , in coastal Yucatan, Mexico. Medical and Veterinary Entomology, 2010, 24, 456-460.	1.5	24
25	Mesocyclops longisetuseffects on survivorship ofAedes aegyptiimmature stages in car tyres. Medical and Veterinary Entomology, 1998, 12, 386-390.	1.5	23
26	Pupal Surveys for Aedes aegypti Surveillance and Potential Targeted Control in Residential Areas of MA©rida, MA©xico. Journal of the American Mosquito Control Association, 2008, 24, 289-298.	0.7	23
27	Research Priorities for Neglected Infectious Diseases in Latin America and the Caribbean Region. PLoS Neglected Tropical Diseases, 2010, 4, e780.	3.0	23
28	Estimating absolute indoor density of Aedes aegypti using removal sampling. Parasites and Vectors, 2019, 12, 250.	2.5	23
29	First Report of Aedes albopictus and Other Mosquito Species in Morelos, Mexico. Journal of the American Mosquito Control Association, 2010, 26, 321-323.	0.7	22
30	Storm Sewers as Larval Habitats for Aedes aegypti and Culex Spp. in a Neighborhood of Merida, Mexico. Journal of the American Mosquito Control Association, 2012, 28, 255-257.	0.7	22
31	Housing improvement: a novel paradigm for urban vector-borne disease control?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 567-569.	1.8	22
32	Epidemiology of dengue and other arboviruses in a cohort of school children and their families in Yucatan, Mexico: Baseline and first year follow-up. PLoS Neglected Tropical Diseases, 2018, 12, e0006847.	3.0	22
33	Fine-scale spatial and temporal dynamics of kdr haplotypes in Aedes aegypti from Mexico. Parasites and Vectors, 2019, 12, 20.	2.5	22
34	Zika transmission patterns: a metaâ€review. Tropical Medicine and International Health, 2019, 24, 523-529.	2.3	22
35	Characterizing environmental suitability of Aedes albopictus (Diptera: Culicidae) in Mexico based on regional and global niche models. Journal of Medical Entomology, 2018, 55, 69-77.	1.8	21
36	The entomological impact of passive metofluthrin emanators against indoor Aedes aegypti: A randomized field trial. PLoS Neglected Tropical Diseases, 2021, 15, e0009036.	3.0	21

#	Article	IF	CITATIONS
37	Prevalence of pediculosis capitis in children from a rural school in Yucatan, Mexico. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2011, 53, 325-327.	1.1	20
38	Use and acceptance of long lasting insecticidal net screens for dengue prevention in Acapulco, Guerrero, Mexico. BMC Public Health, 2014, 14, 846.	2.9	20
39	Natural Vertical Transmission of Dengue-1 Virus in <i>Aedes aegypti</i> Populations in Acapulco, Mexico. Journal of the American Mosquito Control Association, 2014, 30, 143-146.	0.7	19
40	Detection of Zika virus in Aedes mosquitoes from Mexico. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2017, 111, 328-331.	1.8	19
41	Multiâ€scale analysis of the associations among egg, larval and pupal surveys and the presence and abundance of adult female <i>Aedes aegypti</i> (<i>Stegomyia aegypti</i>) in the city of Merida, Mexico. Medical and Veterinary Entomology, 2014, 28, 264-272.	1.5	18
42	Prevention and control of Aedes transmitted infections in the post-pandemic scenario of COVID-19: challenges and opportunities for the region of the Americas. Memorias Do Instituto Oswaldo Cruz, 2020, 115, e200284.	1.6	17
43	Lagochilascaris minor Leiper, 1909 (Nematoda: Ascarididae) in Mexico: three clinical cases from the Peninsula of Yucatan. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2012, 54, 315-317.	1.1	16
44	The TIRS trial: protocol for a cluster randomized controlled trial assessing the efficacy of preventive targeted indoor residual spraying to reduce Aedes-borne viral illnesses in Merida, Mexico. Trials, 2020, 21, 839.	1.6	16
45	Arbovirus Surveillance and First Report of Chikungunya Virus in Wild Populations of <i>Aedes aegypti</i> from Guerrero, Mexico. Journal of the American Mosquito Control Association, 2015, 31, 275-277.	0.7	15
46	Innovative dengue vector control interventions in Latin America: what do they cost?. Pathogens and Global Health, 2016, 110, 14-24.	2.3	15
47	Impact of deltamethrin selection on kdr mutations and insecticide detoxifying enzymes in Aedes aegypti from Mexico. Parasites and Vectors, 2020, 13, 224.	2.5	15
48	Seroprevalence of Dengue Antibodies in Three Urban Settings in Yucatan, Mexico. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1202-1208.	1.4	14
49	4. Insecticide-based approaches for dengue vector control. Ecology and Control of Vector-Borne Diseases, 2021, , 59-89.	0.7	14
50	<i>Ochlerotatus taeniorhynchus</i> : A Probable Vector of <i>Dirofilaria immitis</i> in Coastal Areas of Yucatan, Mexico. Journal of Medical Entomology, 2008, 45, 169-171.	1.8	13
51	Evidencia molecular de Rickettsia typhi en perros de una comunidad rural de Yucatán, México. Biomedica, 2016, 36, 45-50.	0.7	13
52	Taking innovative vector control interventions in urban Latin America to scale: lessons learnt from multi-country implementation research. Pathogens and Global Health, 2017, 111, 306-316.	2.3	13
53	Loss of pyrethroid resistance in newly established laboratory colonies of Aedes aegypti. PLoS Neglected Tropical Diseases, 2020, 14, e0007753.	3.0	13
54	New Record of Aedes albopictus In A Suburban Area Of Merida, Yucatan, Mexico. Journal of the American Mosquito Control Association, 2019, 35, 210-213.	0.7	13

#	Article	IF	CITATIONS
55	CHICKEN COOPS, Triatoma dimidiata INFESTATION AND ITS INFECTION WITH Trypanosoma cruzi IN A RURAL VILLAGE OF YUCATAN, MEXICO. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2015, 57, 269-272.	1.1	12
56	NovelKdrmutations (K964R and A943V) in pyrethroidâ€resistant populations ofTriatoma mazzottiiandTriatoma longipennisfrom Mexico and detoxifying enzymes. Insect Science, 2019, 26, 809-820.	3.0	11
57	Insecticide-treated house screening protects against Zika-infected Aedes aegypti in Merida, Mexico. PLoS Neglected Tropical Diseases, 2021, 15, e0009005.	3.0	11
58	Abundance and Seasonality of Aedes aegypti (Diptera: Culicidae) in Two Suburban Localities of South Mexico, With Implications for Wolbachia (Rickettsiales: Rickettsiaceae)-Carrying Male Releases for Population Suppression. Journal of Medical Entomology, 2021, 58, 1817-1825.	1.8	11
59	Evaluating Over-the-Counter Household Insecticide Aerosols for Rapid Vector Control of Pyrethroid-Resistant Aedes aegypti. American Journal of Tropical Medicine and Hygiene, 2020, 103, 2108-2112.	1.4	11
60	Efficacy of targeted indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-resistant Aedes aegypti. PLoS Neglected Tropical Diseases, 2021, 15, e0009822.	3.0	11
61	The Risk of <i>Aedes aegypti</i> Breeding and Premises Condition in South Mexico. Journal of the American Mosquito Control Association, 2013, 29, 337-345.	0.7	10
62	Birth Defects Associated With Congenital Zika Virus Infection in Mexico. Clinical Pediatrics, 2018, 57, 927-936.	0.8	10
63	Natural arbovirus infection rate and detectability of indoor female Aedes aegypti from Mérida, Yucatán, Mexico. PLoS Neglected Tropical Diseases, 2021, 15, e0008972.	3.0	10
64	Estudio serológico de la Tripanosomiasis Americana y factores asociados en perros de una comunidad rural de Yucatán, México. Archivos De Medicina Veterinaria, 2014, 46, 75-81.	0.2	10
65	Changing paradigms in control: considering the spatial heterogeneity of dengue transmission. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2017, 41, e16.	1.1	10
66	Dengue seroprevalence in a cohort of schoolchildren and their siblings in Yucatan, Mexico (2015-2016). PLoS Neglected Tropical Diseases, 2018, 12, e0006748.	3.0	9
67	Larval density mediates knockdown resistance to pyrethroid insecticides in adult Aedes aegypti. Parasites and Vectors, 2018, 11, 282.	2.5	9
68	Outcomes from international field trials with Male Aedes Sound Traps: Frequency-dependent effectiveness in capturing target species in relation to bycatch abundance. PLoS Neglected Tropical Diseases, 2021, 15, e0009061.	3.0	9
69	Efficacy of Long-lasting Insecticidal Nets With Declining Physical and Chemical Integrity on Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 2019, 57, 503-510.	1.8	8
70	Wolbachia in Native Populations of Aedes albopictus (Diptera: Culicidae) From Yucatan Peninsula, Mexico. Journal of Insect Science, 2020, 20, .	1.5	8
71	Mosquito metallomics reveal copper and iron as critical factors for Plasmodium infection. PLoS Neglected Tropical Diseases, 2021, 15, e0009509.	3.0	8
72	Prevalence of <i>Dirofilaria immitis</i> Infection in Dogs from Celestun, Mexico, Using Polymerase Chain Reaction Test. Vector-Borne and Zoonotic Diseases, 2011, 11, 193-196.	1.5	7

PABLO C MANRIQUE-SAIDE

#	Article	IF	CITATIONS
73	Current Status of the Insecticide Resistance in Aedes aegypti (Diptera: Culicidae) from Mexico. , 0, , .		7
74	Diversity of Tabanidae, Asilidae and Syrphidae (Diptera) in natural protected areas of Yucatan, Mexico. Journal of Insect Conservation, 2018, 22, 85-97.	1.4	7
75	Asian Tiger Mosquito in Yucatan Peninsula: First Record of Aedes (Stegomyia) albopictus (Diptera:) Tj ETQq1 1 0.7	84314 rgE 1.8	3Ţ /Overlack
76	A Survey of the Mosquito Species in Maxcanu, Yucatan, Mexico. Journal of the American Mosquito Control Association, 2018, 34, 128-130.	0.7	7
77	Rickettsia typhi en roedores de una comunidad con antecedentes de tifo murino, de Yucatán, México Revista MVZ Cordoba, 2018, 23, 6974-6980.	0.1	6
78	Rickettsia spp. en garrapatas (Acari: Ixodidae) que infestan perros de una comunidad rural con antecedentes de rickettsiosis, Yucatán, México. Revista Biomedica, 2019, 30, .	0.1	6
79	Zika Virus Infection in Pregnant Women, Yucatan, Mexico. Emerging Infectious Diseases, 2019, 25, 1452-1460.	4.3	5
80	Detección de Aedes (Stegomyia) albopictus (Skuse) en ovitrampas en Mérida, México. Biomedica, 2021, 41, 153-160.	0.7	5
81	Phlebotomine sand flies (Diptera: Psychodidae) from an emergent focus of localized cutaneous leishmaniasis in Yucatan, Southeast Mexico. Journal of Vector Ecology, 2022, 47, 9-18.	1.0	5
82	Entomological Efficacy of Aerial Ultra-Low Volume Insecticide Applications Against Aedes aegypti (Diptera: Culicidae) in Mexico. Journal of Medical Entomology, 2019, 56, 1331-1337.	1.8	4
83	Diversity of Culicidae and Tabanidae (Diptera) and new record of Uranotaenia sapphirina from the archaeological site of X'cambó, Yucatan, Mexico. International Journal of Tropical Insect Science, 2021, 41, 1355-1363.	1.0	4
84	Protective effect of houseâ€screening against indoor Aedes aegypti in Mérida, Mexico: a cluster randomized controlled trial. Tropical Medicine and International Health, 2021, 26, 1677-1688.	2.3	4
85	Efectividad de repelentes comerciales disponibles contra el mosquito Aedesaegypti (L.) en Yucatán, México. Salud Publica De Mexico, 0, , 472-475.	0.4	4
86	Bioefficacy of Two Nonpyrethroid Insecticides for Targeted Indoor Residual Spraying Against Pyrethroid-Resistant Aedes aegypti. Journal of the American Mosquito Control Association, 2019, 35, 291-294.	0.7	4
87	Noteworthy Records of <i>Brachypelma</i> (Araneae: Theraphosidae) from Peninsula of Yucatan, Mexico. Entomological News, 2009, 120, 566-569.	0.2	3
88	Evidencia de Leptospira spp. en musarañas Cryptotis mayensis. Nuevo hospedero en Yucatán, México Revista Biomedica, 2021, 32, 161-165.	0.1	3
89	Field Efficacy Trials of Aerial Ultra-Low-Volume Application of Insecticides Against Caged <i>Aedes aegypti</i> in Mexico. Journal of the American Mosquito Control Association, 2019, 35, 140-146.	0.7	3
90	Natural <i>Aedes</i> -Borne Virus Infection Detected in Male Adult <i>Aedes aegypti</i> (Diptera:) Tj ETQq0 0 0 rg	BT /Overlo 1.8	ock 10 Tf 50 3

6

#	Article	IF	CITATIONS
91	Olbiogaster Osten Sacken (Diptera: Anisopodidae) from Mexico, with the description of three new species. Zootaxa, 2019, 4565, zootaxa.4565.4.2.	0.5	2
92	Mosquito species (Diptera: culicidae) collected after tropical storm cristobal in Merida, Yucatan, South-east Mexico. International Journal of Tropical Insect Science, 2021, , 1-6.	1.0	2
93	Experimental evaluation of a metofluthrin passive emanator against Aedes albopictus. PLoS ONE, 2022, 17, e0267278.	2.5	2
94	Use and acceptance of long lasting insecticidal net screens for dengue prevention in Acapulco, Guerrero, Mexico. BMC Infectious Diseases, 2014, 14, .	2.9	1
95	Insecticide-Treated House Screens to Reduce Infestations of Dengue Vectors. , 2017, , .		1
96	An Integrated Intervention Model for the Prevention of Zika and Other Aedes-Borne Diseases in Women and their Families in Mexico. , 0, , .		1
97	Dengue Immunopathogenesis: A Crosstalk between Host and Viral Factors Leading to Disease: Part I - Dengue Virus Tropism, Host Innate Immune Responses, and Subversion of Antiviral Responses. , 2020, , .		1
98	Susceptibility Status of a Recently Introduced Population of <i>Aedes albopictus</i> to Insecticides Used by the Vector Control Program in Merida, Yucatan, Mexico. Journal of the American Mosquito Control Association, 2021, 37, 164-168.	0.7	1
99	Registros nuevos de especies de sÃrfidos (Diptera: Syrphidae) para Yucatán, México. Revista Mexicana De Biodiversidad, 2011, 82, .	0.4	1
100	Arboviruses in Yucatan, Mexico. , 2019, , 152-167.		1
101	Spread of Aedes albopictus1 in the Yucatan Peninsula, Mexico, from 2011 to 2019. Southwestern Entomologist, 2020, 45, .	0.2	1
102	Dengue Immunopathogenesis: AÂCrosstalk between Host and Viral Factors Leading to Disease: PART II - DENV Infection, Adaptive Immune Responses, andÂNS1 Pathogenesis. , 0, , .		1
103	New records of genus Culicoides Latreille from Oaxaca, Mexico (Diptera: Ceratopogonidae). Acta Zoológica Mexicana, 0, , 1-27.	1.1	1
104	Challenges for the Introduction and Evaluation of the Impact of Innovative Aedes aegypti Control Strategies. , 0, , .		0
105	Clinical Manifestations in Pregnant Women and Congenital Abnormalities in Fetus and Newborns during a Zika Transmission Period in South Mexico. , 0, , .		0
106	New Distribution Records of <i>Anopheles darlingi</i> in Quintana Roo, Southeastern Mexico. Journal of the American Mosquito Control Association, 2021, 37, 175-178.	0.7	0
107	¿Pueden los mosquitos transmitir el virus de la inmunodeficiencia humana?. Revista Biomedica, 2001, 12, 130-136.	0.1	0
108	Insecticide-treated house screens to reduce infestations of dengue vectors. , 2016, , .		0

Insecticide-treated house screens to reduce infestations of dengue vectors. , 2016, , . 108

#	Article	IF	CITATIONS
109	Evaluation and Comparison of Spray Equipment for Indoor Residual Spraying. Journal of the American Mosquito Control Association, 2019, 35, 107-112.	0.7	0
110	Diversity of mosquitoes (Diptera: Culicidae) in public parks of Merida, Yucatan, Mexico. International Journal of Tropical Insect Science, 0, , .	1.0	0
111	SARS-CoV-2 antibody prevalence in a pediatric cohort of unvaccinated children in Mérida, YucatÃ;n, México. PLOS Global Public Health, 2022, 2, e0000354.	1.6	0
112	Mosquito Excito-Repellency: Effects on Behavior and the Development of Insecticide Resistance. , 0, , .		0