
Eugenia V Gurevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2664551/publications.pdf Version: 2024-02-01

FUCENIA V CUREVICH

#	Article	IF	CITATIONS
1	G protein-coupled receptor kinases: More than just kinases and not only for GPCRs. , 2012, 133, 40-69.		368
2	GPCR Signaling Regulation: The Role of GRKs and Arrestins. Frontiers in Pharmacology, 2019, 10, 125.	3.5	358
3	Arrestins: ubiquitous regulators of cellular signaling pathways. Genome Biology, 2006, 7, 236.	9.6	243
4	Visual and Both Non-visual Arrestins in Their "Inactive―Conformation Bind JNK3 and Mdm2 and Relocalize Them from the Nucleus to the Cytoplasm. Journal of Biological Chemistry, 2006, 281, 21491-21499.	3.4	124
5	G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacological Research, 2016, 111, 1-16.	7.1	100
6	Structural basis of arrestin-3 activation and signaling. Nature Communications, 2017, 8, 1427.	12.8	92
7	Silent Scaffolds. Journal of Biological Chemistry, 2012, 287, 19653-19664.	3.4	87
8	Biased GPCR signaling: Possible mechanisms and inherent limitations. , 2020, 211, 107540.		72
9	Therapeutic Potential of Small Molecules and Engineered Proteins. Handbook of Experimental Pharmacology, 2014, 219, 1-12.	1.8	70
10	Molecular Mechanisms of GPCR Signaling: A Structural Perspective. International Journal of Molecular Sciences, 2017, 18, 2519.	4.1	62
11	GPCRs and Signal Transducers: Interaction Stoichiometry. Trends in Pharmacological Sciences, 2018, 39, 672-684.	8.7	54
12	G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs). Journal of Biological Chemistry, 2015, 290, 10775-10790.	3.4	53
13	Peptide mini-scaffold facilitates JNK3 activation in cells. Scientific Reports, 2016, 6, 21025.	3.3	50
14	Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules, 2021, 11, 218.	4.0	45
15	Arrestin-mediated signaling: Is there a controversy?. World Journal of Biological Chemistry, 2018, 9, 25-35.	4.3	41
16	Extensive shape shifting underlies functional versatility of arrestins. Current Opinion in Cell Biology, 2014, 27, 1-9.	5.4	40
17	Uncovering missing pieces: duplication and deletion history of arrestins in deuterostomes. BMC Evolutionary Biology, 2017, 17, 163.	3.2	39
18	Arrestins. Progress in Molecular Biology and Translational Science, 2015, 132, 1-14.	1.7	38

Eugenia V Gurevich

#	Article	IF	CITATIONS
19	Plethora of functions packed into 45ÂkDa arrestins: biological implications and possible therapeutic strategies. Cellular and Molecular Life Sciences, 2019, 76, 4413-4421.	5.4	37
20	The structural basis of the arrestin binding to GPCRs. Molecular and Cellular Endocrinology, 2019, 484, 34-41.	3.2	34
21	Arrestins regulate cell spreading and motility via focal adhesion dynamics. Molecular Biology of the Cell, 2015, 26, 622-635.	2.1	30
22	Structural basis of GPCR coupling to distinct signal transducers: implications for biased signaling. Trends in Biochemical Sciences, 2022, 47, 570-581.	7.5	27
23	Arrestins and G proteins in cellular signaling: The coin has two sides. Science Signaling, 2018, 11, .	3.6	24
24	Arrestins: structural disorder creates rich functionality. Protein and Cell, 2018, 9, 986-1003.	11.0	23
25	Analyzing the roles of multi-functional proteins in cells: The case of arrestins and GRKs. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 440-52.	5.2	22
26	Mdm2 enhances ligase activity of parkin and facilitates mitophagy. Scientific Reports, 2020, 10, 5028.	3.3	17
27	GRK3 suppresses L-DOPA-induced dyskinesia in the rat model of Parkinson's disease via its RGS homology domain. Scientific Reports, 2015, 5, 10920.	3.3	16
28	The finger loop as an activation sensor in arrestin. Journal of Neurochemistry, 2021, 157, 1138-1152.	3.9	15
29	Lysine in the lariat loop of arrestins does not serve as phosphate sensor. Journal of Neurochemistry, 2021, 156, 435-444.	3.9	14
30	GRKs as Modulators of Neurotransmitter Receptors. Cells, 2021, 10, 52.	4.1	14
31	Molecular Defects of the Disease-Causing Human Arrestin-1 C147F Mutant. , 2018, 59, 13.		13
32	Arrestinâ€3â€Dependent Activation of câ€Jun Nâ€Terminal Kinases (JNKs). Current Protocols in Pharmacology, 2015, 68, 2.12.1-2.12.26.	4.0	11
33	Non-visual arrestins regulate the focal adhesion formation via small GTPases RhoA and Rac1 independently of GPCRs. Cellular Signalling, 2018, 42, 259-269.	3.6	11
34	Enhanced Mutant Compensates for Defects in Rhodopsin Phosphorylation in the Presence of Endogenous Arrestin-1. Frontiers in Molecular Neuroscience, 2018, 11, 203.	2.9	11
35	Arrestin mutations: Some cause diseases, others promise cure. Progress in Molecular Biology and Translational Science, 2019, 161, 29-45.	1.7	10
36	Arrestins: Introducing Signaling Bias Into Multifunctional Proteins. Progress in Molecular Biology and Translational Science, 2018, 160, 47-61.	1.7	6

Eugenia V Gurevich

#	Article	IF	CITATIONS
37	Biological Role of Arrestin-1 Oligomerization. Journal of Neuroscience, 2020, 40, 8055-8069.	3.6	5
38	Using In Vitro Pull-Down and In-Cell Overexpression Assays to Study Protein Interactions with Arrestin. Methods in Molecular Biology, 2019, 1957, 107-120.	0.9	2
39	Targeting arrestin interactions with its partners for therapeutic purposes. Advances in Protein Chemistry and Structural Biology, 2020, 121, 169-197.	2.3	2
40	ARRESTINâ€ÐEPENDENT SUBCELLULAR REDISTRIBUTION OF SIGNALING PROTEINS. FASEB Journal, 2006, 20, A110.	0.5	2
41	Location, Location, Location: The Expression of D3 Dopamine Receptors in the Nervous System. Current Topics in Behavioral Neurosciences, 2022, , 29-45.	1.7	2
42	Unraveling the Mechanism of Dyskinesia One Transcription Factor at a Time. Biological Psychiatry, 2016, 79, 338-340.	1.3	1
43	Designer adhesion GPCR tells its signaling story. Nature Chemical Biology, 2020, 16, 1280-1281.	8.0	0
44	Silent scaffolds: inhibition of JNK3 activity in living cells by a dominantâ€negative arrestinâ€3 mutant. FASEB Journal, 2012, 26, 761.2.	0.5	0
45	Role of GRK6 in the addictive effect of psychostimulant drugs. FASEB Journal, 2013, 27, 659.14.	0.5	Ο