
Nick van Gastel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2664295/publications.pdf Version: 2024-02-01

NICK VAN GASTEL

#	Article	IF	CITATIONS
1	A new murine model of Barth syndrome neutropenia links TAFAZZIN deficiency to increased ER stress-induced apoptosis. Blood Advances, 2022, 6, 2557-2577.	5.2	10
2	Analysis of Leukemia Cell Metabolism through Stable Isotope Tracing in Mice. Bio-protocol, 2021, 11, e4171.	0.4	1
3	Imaging dynamic mTORC1 pathway activity in vivo reveals marked shifts that support time-specific inhibitor therapy in AML. Nature Communications, 2021, 12, 245.	12.8	18
4	Young haematopoietic stem cells are picky eaters. Cell Research, 2021, 31, 377-378.	12.0	1
5	Malic enzyme 2 connects the Krebs cycle intermediate fumarate to mitochondrial biogenesis. Cell Metabolism, 2021, 33, 1027-1041.e8.	16.2	30
6	Metabolic perturbations sensitize triple-negative breast cancers to apoptosis induced by BH3 mimetics. Science Signaling, 2021, 14, .	3.6	10
7	Metabolic regulation of skeletal cell fate and function in physiology and disease. Nature Metabolism, 2021, 3, 11-20.	11.9	59
8	Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance. Cell Metabolism, 2020, 32, 391-403.e6.	16.2	79
9	C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature, 2020, 582, 89-94.	27.8	182
10	Aldehyde dehydrogenase 3a2 protects AML cells from oxidative death and the synthetic lethality of ferroptosis inducers. Blood, 2020, 136, 1303-1316.	1.4	68
11	Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature, 2020, 579, 111-117.	27.8	140
12	Nestin-GFP transgene labels skeletal progenitors in the periosteum. Bone, 2020, 133, 115259.	2.9	29
13	Inhibition of the Oxygen Sensor PHD2 Enhances Tissue-Engineered Endochondral Bone Formation. Journal of Bone and Mineral Research, 2019, 34, 333-348.	2.8	15
14	The Distinctive Metabolic Environment of the Bone Marrow Niche Drives Leukemia Chemoresistance. Blood, 2019, 134, 3725-3725.	1.4	0
15	Fine-tuning pro-angiogenic effects of cobalt for simultaneous enhancement of vascular endothelial growth factor secretion and implant neovascularization. Acta Biomaterialia, 2018, 72, 447-460.	8.3	18
16	Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. Biomaterials, 2018, 159, 1-12.	11.4	70
17	An Ectopic Imaging Window for Intravital Imaging of Engineered Bone Tissue. JBMR Plus, 2018, 2, 92-102.	2.7	9
18	Regulatory elements driving the expression of skeletal lineage reporters differ during bone development and adulthood. Bone, 2017, 105, 154-162.	2.9	5

NICK VAN GASTEL

#	Article	IF	CITATIONS
19	Neovascularization Potential of Blood Outgrowth Endothelial Cells From Patients With Stable Ischemic Heart Failure Is Preserved. Journal of the American Heart Association, 2016, 5, e002288.	3.7	19
20	Targeting the hypoxic response in bone tissue engineering: A balance between supply and consumption to improve bone regeneration. Molecular and Cellular Endocrinology, 2016, 432, 96-105.	3.2	25
21	HIF-1α Promotes Glutamine-Mediated Redox Homeostasis and Glycogen-Dependent Bioenergetics to Support Postimplantation Bone Cell Survival. Cell Metabolism, 2016, 23, 265-279.	16.2	142
22	Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways. Stem Cell Research, 2015, 15, 715-721.	0.7	59
23	Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response. Journal of Cell Biology, 2015, 210, 1239-1256.	5.2	17
24	The vasculature: a vessel for bone metastasis. BoneKEy Reports, 2015, 4, 742.	2.7	34
25	Bringing new life to damaged bone: The importance of angiogenesis in bone repair and regeneration. Bone, 2015, 70, 19-27.	2.9	337
26	Uncovering the periosteum for skeletal regeneration: The stem cell that lies beneath. Bone, 2015, 70, 10-18.	2.9	207
27	Oxygen as a critical determinant of bone fracture healing—A multiscale model. Journal of Theoretical Biology, 2015, 365, 247-264.	1.7	80
28	Size Does Matter: An Integrative In Vivo-In Silico Approach for the Treatment of Critical Size Bone Defects. PLoS Computational Biology, 2014, 10, e1003888.	3.2	51
29	Expansion of Murine Periosteal Progenitor Cells with Fibroblast Growth Factor 2 Reveals an Intrinsic Endochondral Ossification Program Mediated by Bone Morphogenetic Protein 2. Stem Cells, 2014, 32, 2407-2418.	3.2	63
30	Periostin regulates murine adult hematopoiesis by affecting hematopoietic stem cells directly as well through bone formation. Experimental Hematology, 2014, 42, S42.	0.4	0
31	HIF-1α stabilization in Phd1/3-/- mice results in increase in hematopoietic stem cell number and enhanced HSC maintenance in BM niche. Experimental Hematology, 2013, 41, S36.	0.4	1
32	Engineering Vascularized Bone: Osteogenic and Proangiogenic Potential of Murine Periosteal Cells. Stem Cells, 2012, 30, 2460-2471.	3.2	110
33	Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers. Biomaterials, 2012, 33, 3127-3142.	11.4	103
34	Development of micro-CT protocols for in vivo follow-up of mouse bone architecture without major radiation side effects. Bone, 2011, 49, 613-622.	2.9	82
35	An iterative dual energy CT reconstruction method for a K-edge contrast material. Proceedings of SPIE, 2011, , .	0.8	7
36	Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance. SSRN Electronic Journal, 0, , .	0.4	0

3