Yong-Xiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/266345/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dexmedetomidine attenuates lipopolysaccharide-induced inflammation through macrophageal IL-10 expression following $\hat{I}\pm7$ nAchR activation. International Immunopharmacology, 2022, 109, 108920.	3.8	2
2	Bulleyaconitine A Inhibits Morphine-Induced Withdrawal Symptoms, Conditioned Place Preference, and Locomotor Sensitization Via Microglial Dynorphin A Expression. Frontiers in Pharmacology, 2021, 12, 620926.	3.5	2
3	Mouse strain specificity of DAAO inhibitorsâ€mediated antinociception. Pharmacology Research and Perspectives, 2021, 9, e00727.	2.4	3
4	Protopanaxadiol alleviates neuropathic pain by spinal microglial dynorphin A expression following glucocorticoid receptor activation. British Journal of Pharmacology, 2021, 178, 2976-2997.	5.4	9
5	Spinal microglial βâ€endorphin signaling mediates ILâ€10 and exenatideâ€induced inhibition of synaptic plasticity in neuropathic pain. CNS Neuroscience and Therapeutics, 2021, 27, 1157-1172.	3.9	18
6	Microglial IL-10 and β-endorphin expression mediates gabapentinoids antineuropathic pain. Brain, Behavior, and Immunity, 2021, 95, 344-361.	4.1	16
7	Microglial Activation of GLP-1R Signaling in Neuropathic Pain Promotes Gene Expression Adaption Involved in Inflammatory Responses. Neural Plasticity, 2021, 2021, 1-12.	2.2	7
8	Cynandione A and PHA-543613 inhibit inflammation and stimulate macrophageal IL-10 expression following α7 nAChR activation. Biochemical Pharmacology, 2021, 190, 114600.	4.4	6
9	Comparative study of dezocine, pentazocine and tapentadol on antinociception and physical dependence. Life Sciences, 2021, 285, 119996.	4.3	4
10	Thalidomide alleviates neuropathic pain through microglial IL-10/β-endorphin signaling pathway. Biochemical Pharmacology, 2021, 192, 114727.	4.4	11
11	Acupuncture/Electroacupuncture as an Alternative in Current Opioid Crisis. Chinese Journal of Integrative Medicine, 2020, 26, 643-647.	1.6	19
12	Involvement of Oxytocin Receptor/Erk/MAPK Signaling in the mPFC in Early Life Stress-Induced Autistic-Like Behaviors. Frontiers in Cell and Developmental Biology, 2020, 8, 564485.	3.7	15
13	Lemairamin, isolated from the Zanthoxylum plants, alleviates pain hypersensitivity via spinal α7 nicotinic acetylcholine receptors. Biochemical and Biophysical Research Communications, 2020, 525, 1087-1094.	2.1	15
14	The spinal microglial IL-10/β-endorphin pathway accounts for cinobufagin-induced mechanical antiallodynia in bone cancer pain following activation of α7-nicotinic acetylcholine receptors. Journal of Neuroinflammation, 2020, 17, 75.	7.2	28
15	Bulleyaconitine A Inhibits Visceral Nociception and Spinal Synaptic Plasticity through Stimulation of Microglial Release of Dynorphin A. Neural Plasticity, 2020, 2020, 1-13.	2.2	9
16	Dual μ-opioid receptor and norepinephrine reuptake mechanisms contribute to dezocine- and tapentadol-induced mechanical antiallodynia in cancer pain. European Journal of Pharmacology, 2020, 876, 173062.	3.5	10
17	Synergistic interaction between butorphanol and dexmedetomidine in antinociception. European Journal of Pharmaceutical Sciences, 2020, 149, 105322.	4.0	10
18	Bulleyaconitine A Exerts Antianxiety and Antivisceral Hypersensitivity Effects. Frontiers in Pharmacology, 2020, 11, 328.	3.5	7

YONG-XIANG WANG

#	Article	IF	CITATIONS
19	Cynandione A Alleviates Neuropathic Pain Through α7-nAChR-Dependent IL-10/β-Endorphin Signaling Complexes. Frontiers in Pharmacology, 2020, 11, 614450.	3.5	8
20	Low frequency electroacupuncture alleviates neuropathic pain by activation of spinal microglial IL-10/β-endorphin pathway. Biomedicine and Pharmacotherapy, 2020, 125, 109898.	5.6	34
21	Gelsemine and koumine, principal active ingredients of Gelsemium, exhibit mechanical antiallodynia via spinal glycine receptor activation-induced allopregnanolone biosynthesis. Biochemical Pharmacology, 2019, 161, 136-148.	4.4	23
22	Involvement of d â€amino acid oxidase in cerebral ischaemia induced by transient occlusion of the middle cerebral artery in mice. British Journal of Pharmacology, 2019, 176, 3336-3349.	5.4	6
23	Synthesis and Biological Evaluation of 4β-N-Acetylamino Substituted Podophyllotoxin Derivatives as Novel Anticancer Agents. Frontiers in Chemistry, 2019, 7, 253.	3.6	9
24	Activation of GPR40 produces mechanical antiallodynia via the spinal glial interleukin-10/β-endorphin pathway. Journal of Neuroinflammation, 2019, 16, 84.	7.2	27
25	Both classic Gs-cAMP/PKA/CREB and alternative Gs-cAMP/PKA/p38β/CREB signal pathways mediate exenatide-stimulated expression of M2 microglial markers. Journal of Neuroimmunology, 2018, 316, 17-22.	2.3	40
26	Liposome-encapsulated clodronate specifically depletes spinal microglia and reduces initial neuropathic pain. Biochemical and Biophysical Research Communications, 2018, 499, 499-505.	2.1	31
27	Regulation of Gli2 stability by deubiquitinase OTUB2. Biochemical and Biophysical Research Communications, 2018, 505, 113-118.	2.1	11
28	Spinal interleukin-10 produces antinociception in neuropathy through microglial β-endorphin expression, separated from antineuroinflammation. Brain, Behavior, and Immunity, 2018, 73, 504-519.	4.1	51
29	Lappaconitine, a C18-diterpenoid alkaloid, exhibits antihypersensitivity in chronic pain through stimulation of spinal dynorphin A expression. Psychopharmacology, 2018, 235, 2559-2571.	3.1	37
30	Concurrent bullatine A enhances morphine antinociception and inhibits morphine antinociceptive tolerance by indirect activation of spinal κ-opioid receptors. Journal of Ethnopharmacology, 2017, 196, 151-159.	4.1	17
31	Morroniside, a secoiridoid glycoside from <scp><i>Cornus officinalis</i></scp> <i>,</i> attenuates neuropathic pain by activation of spinal glucagonâ€like peptideâ€1 receptors. British Journal of Pharmacology, 2017, 174, 580-590.	5.4	32
32	Dezocine exhibits antihypersensitivity activities in neuropathy through spinal μ-opioid receptor activation and norepinephrine reuptake inhibition. Scientific Reports, 2017, 7, 43137.	3.3	35
33	p38β Mitogen-Activated Protein Kinase Signaling Mediates Exenatide-Stimulated Microglial β-Endorphin Expression. Molecular Pharmacology, 2017, 91, 451-463.	2.3	27
34	Cynandione A attenuates neuropathic pain through p38β MAPK-mediated spinal microglial expression of β-endorphin. Brain, Behavior, and Immunity, 2017, 62, 64-77.	4.1	41
35	Molecular signaling underlying bulleyaconitine A (BAA)-induced microglial expression of prodynorphin. Scientific Reports, 2017, 7, 45056.	3.3	25
36	Autocrine Interleukin-10 Mediates Glucagon-Like Peptide-1 Receptor-Induced Spinal Microglial β-Endorphin Expression. Journal of Neuroscience, 2017, 37, 11701-11714.	3.6	57

#	Article	IF	CITATIONS
37	Ester Hydrolysis Differentially Reduces Aconitine-Induced Anti-hypersensitivity and Acute Neurotoxicity: Involvement of Spinal Microglial Dynorphin Expression and Implications for Aconitum Processing. Frontiers in Pharmacology, 2016, 7, 367.	3.5	30
38	Bullatine A stimulates spinal microglial dynorphin A expression to produce anti-hypersensitivity in a variety of rat pain models. Journal of Neuroinflammation, 2016, 13, 214.	7.2	45
39	Aconitum-Derived Bulleyaconitine A Exhibits Antihypersensitivity Through Direct Stimulating Dynorphin A Expression in Spinal Microglia. Journal of Pain, 2016, 17, 530-548.	1.4	43
40	Discovery and analgesic evaluation of 8-chloro-1,4-dihydropyrido[2,3- b]pyrazine-2,3-dione as a novel potent d -amino acid oxidase inhibitor. European Journal of Medicinal Chemistry, 2016, 117, 19-32.	5.5	5
41	Mechanical antihypersensitivity effect induced by repeated spinal administrations of a TRPA1 antagonist or a gap junction decoupler in peripheral neuropathy. Pharmacology Biochemistry and Behavior, 2016, 150-151, 57-67.	2.9	10
42	Potential role of spinal TRPA1 channels in antinociceptive tolerance to spinally administered morphine. Pharmacological Reports, 2016, 68, 472-475.	3.3	18
43	Methylglyoxal mediates streptozotocin-induced diabetic neuropathic pain via activation of the peripheral TRPA1 and Nav1.8 channels. Metabolism: Clinical and Experimental, 2016, 65, 463-474.	3.4	67
44	Shanzhiside methylester, the principle effective iridoid glycoside from the analgesic herb Lamiophlomis rotata , reduces neuropathic pain by stimulating spinal microglial β-endorphin expression. Neuropharmacology, 2016, 101, 98-109.	4.1	54
45	Epidural Sustained Release Ropivacaine Prolongs Anti-Allodynia and Anti-Hyperalgesia in Developing and Established Neuropathic Pain. PLoS ONE, 2015, 10, e0117321.	2.5	12
46	The nonâ€peptide <scp>GLP</scp> â€1 receptor agonist <scp>WB</scp> 4â€24 blocks inflammatory nociception by stimulating <scp>β</scp> â€endorphin release from spinal microglia. British Journal of Pharmacology, 2015, 172, 64-79.	5.4	51
47	Contributions of spinal d-amino acid oxidase to chronic morphine-induced hyperalgesia. Journal of Pharmaceutical and Biomedical Analysis, 2015, 116, 131-138.	2.8	15
48	Peptidic exenatide and herbal catalpol mediate neuroprotection via the hippocampal GLP-1 receptor/β-endorphin pathway. Pharmacological Research, 2015, 102, 276-285.	7.1	32
49	Gelsemium analgesia and the spinal glycine receptor/allopregnanolone pathway. Fìtoterapìâ, 2015, 100, 35-43.	2.2	42
50	Beneficial effects of natural Jeju groundwaters on lipid metabolism in high-fat diet-induced hyperlipidemic rats. Nutrition Research and Practice, 2014, 8, 165.	1.9	2
51	Geniposide and its iridoid analogs exhibit antinociception by acting at the spinal GLP-1 receptors. Neuropharmacology, 2014, 84, 31-45.	4.1	61
52	Oral JS-38, a metabolite from Xenorhabdus sp., has both anti-tumor activity and the ability to elevate peripheral neutrophils. Chinese Journal of Natural Medicines, 2014, 12, 768-776.	1.3	1
53	Activation of Spinal Glucagon-Like Peptide-1 Receptors Specifically Suppresses Pain Hypersensitivity. Journal of Neuroscience, 2014, 34, 5322-5334.	3.6	98
54	Identification of a Novel Spinal Dorsal Horn Astroglial <scp>d</scp> -Amino Acid Oxidase–Hydrogen Peroxide Pathway Involved in Morphine Antinociceptive Tolerance. Anesthesiology, 2014, 120, 962-975.	2.5	29

#	Article	IF	CITATIONS
55	<i>Lamiophlomis rotata</i> , an Orally Available Tibetan Herbal Painkiller, Specifically Reduces Pain Hypersensitivity States through the Activation of Spinal Glucagon-like Peptide-1 Receptors. Anesthesiology, 2014, 121, 835-851.	2.5	46
56	Pain Assessment Using the Rat and Mouse Formalin Tests. Bio-protocol, 2014, 4, .	0.4	19
57	Beneficial effects of natural Jeju groundwaters on lipid metabolism in high-fat diet-induced hyperlipidemic rats. Nutrition Research and Practice, 2014, 8, 165.	1.9	0
58	Local protective effects of oral 45S5 bioactive glass on gastric ulcers in experimental animals. Journal of Materials Science: Materials in Medicine, 2013, 24, 803-809.	3.6	13
59	Spinal D-amino acid oxidase contributes to mechanical pain hypersensitivity induced by sleep deprivation in the rat. Pharmacology Biochemistry and Behavior, 2013, 111, 30-36.	2.9	24
60	Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal α3 glycine receptors. Pain, 2013, 154, 2452-2462.	4.2	86
61	Biological Implications of Oxidation and Unidirectional Chiral Inversion of D-amino Acids. Current Drug Metabolism, 2012, 13, 321-331.	1.2	21
62	Interactions of the potent d-amino acid oxidase inhibitor CBIO with morphine in pain and tolerance to analgesia. Neuropharmacology, 2012, 63, 460-468.	4.1	27
63	Down-regulation of spinal d-amino acid oxidase expression blocks formalin-induced tonic pain. Biochemical and Biophysical Research Communications, 2012, 421, 501-507.	2.1	26
64	Contributions of spinal d-amino acid oxidase to bone cancer pain. Amino Acids, 2012, 43, 1905-1918.	2.7	36
65	<scp>d</scp> â€Amino acid oxidaseâ€mediated increase in spinal hydrogen peroxide is mainly responsible for formalinâ€induced tonic pain. British Journal of Pharmacology, 2012, 165, 1941-1955.	5.4	46
66	EGT1442, a potent and selective SGLT2 inhibitor, attenuates blood glucose and HbA1c levels in db/db mice and prolongs the survival of stroke-prone rats. Pharmacological Research, 2011, 63, 284-293.	7.1	57
67	Intrathecal administration of antioxidants attenuates mechanical pain hypersensitivity induced by REM sleep deprivation in the rat. Scandinavian Journal of Pain, 2011, 2, 64-69.	1.3	9
68	Histone deacetylation directs DNA methylation in survivin gene silencing. Biochemical and Biophysical Research Communications, 2011, 404, 268-272.	2.1	13
69	Effects of Anaesthetic Agents on Pressor Response to β-Blockers in the Rat. Journal of Pharmacy and Pharmacology, 2011, 44, 34-38.	2.4	1
70	Siteâ€specific PEGylation of exenatide analogues markedly improved their glucoregulatory activity. British Journal of Pharmacology, 2011, 163, 399-412.	5.4	50
71	Spinal transient receptor potential ankyrin 1 channel contributes to central pain hypersensitivity in various pathophysiological conditions in the rat. Pain, 2011, 152, 582-591.	4.2	79
72	A Series of d-Amino Acid Oxidase Inhibitors Specifically Prevents and Reverses Formalin-Induced Tonic Pain in Rats. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 282-293.	2.5	55

YONG-XIANG WANG

#	Article	IF	CITATIONS
73	Intrathecal administration of a gap junction decoupler, an inhibitor of Na+–K+–2Cl┠cotransporter 1, or a GABAA receptor agonist attenuates mechanical pain hypersensitivity induced by REM sleep deprivation in the rat. Pharmacology Biochemistry and Behavior, 2010, 97, 377-383.	2.9	31
74	Indispensable but Insufficient Role of Renal D-Amino Acid Oxidase in Chiral Inversion of NG-Nitro-D-arginine. Chemistry and Biodiversity, 2010, 7, 1413-1423.	2.1	3
75	Spinal d-Amino Acid Oxidase Contributes to Neuropathic Pain in Rats. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 248-254.	2.5	47
76	Induced epigenetic modifications of the promoter chromatin silence survivin and inhibit tumor growth. Biochemical and Biophysical Research Communications, 2010, 393, 592-597.	2.1	16
77	Inhibition of d-Amino-Acid Oxidase Activity Induces Pain Relief in Mice. Cellular and Molecular Neurobiology, 2008, 28, 581-591.	3.3	37
78	Role of spinal 5-HT receptors in cutaneous hypersensitivity induced by REM sleep deprivation. Pharmacological Research, 2008, 57, 469-475.	7.1	30
79	Pain-related behavior following REM sleep deprivation in the rat: Influence of peripheral nerve injury, spinal glutamatergic receptors and nitric oxide. Brain Research, 2007, 1148, 105-112.	2.2	43
80	d-DOPA IS UNIDIRECTIONALLY CONVERTED TO I-DOPA BY d-AMINO ACID OXIDASE, FOLLOWED BY DOPA TRANSAMINASE. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 1042-1046.	1.9	28
81	Renal d-Amino Acid Oxidase Mediates Chiral Inversion of NG-Nitro-d-arginine. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 1090-1096.	2.5	19
82	Effects of intrathecal administration of ziconotide, a selective neuronal N-type calcium channel blocker, on mechanical allodynia and heat hyperalgesia in a rat model of postoperative pain. Pain, 2000, 84, 151-158.	4.2	99
83	Interactions of intrathecally administered ziconotide, a selective blocker of neuronal N-type voltage-sensitive calcium channels, with morphine on nociception in rats. Pain, 2000, 84, 271-281.	4.2	128
84	Bilateral kidney ligation abolishes pressor response to NG-nitro-d-arginine. European Journal of Pharmacology, 1999, 366, 175-179.	3.5	2
85	Biological activation of NC-nitro-D-arginine by kidney homogenate. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 495-499.	3.0	3
86	Increase by N ^G â€nitro‣â€arginine methyl ester (Lâ€NAME) of resistance to venous return in rats. British Journal of Pharmacology, 1995, 114, 1454-1458.	5.4	51
87	Vascular pharmacology of methylene blue <i>in vitro</i> and <i>in vivo</i> : a comparison with N ^G â€nitroâ€ <scp>l</scp> â€arginine and diphenyleneiodonium. British Journal of Pharmacology, 1995, 114, 194-202.	5.4	21
88	A comparison of the inhibitory effects of sodium nitroprusside, pinacidil and nifedipine on pressor response to N ^G â€nitroâ€ <scp>l</scp> â€arginine. British Journal of Pharmacology, 1993, 108, 398-404.	5.4	9
89	Halothane inhibits the pressor effect of diphenyleneiodonium. British Journal of Pharmacology, 1993, 109, 1186-1191.	5.4	16
90	Inhibitory actions of diphenyleneiodonium on endotheliumâ€dependent vasodilatations <i>in vitro</i> and <i>in vivo</i> . British Journal of Pharmacology, 1993, 110, 1232-1238.	5.4	31

#	Article	IF	CITATIONS
91	Mechanism of the vasodilator action of calcitonin geneâ€related peptide in conscious rats. British Journal of Pharmacology, 1992, 106, 45-48.	5.4	38
92	Possible dependence of pressor and heart rate effects of N ^G â€nitroâ€ <scp>l</scp> â€arginine on autonomic nerve activity. British Journal of Pharmacology, 1991, 103, 2004-2008.	5.4	32
93	Actions of lead on transmitter release at mouse motor nerve terminals. Pflugers Archiv European Journal of Physiology, 1991, 419, 274-280.	2.8	11