Yong-Xiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/266345/publications.pdf

Version: 2024-02-01

93 papers 2,620 citations

147801 31 h-index 233421 45 g-index

94 all docs 94 docs citations 94 times ranked

2437 citing authors

#	Article	IF	CITATIONS
1	Interactions of intrathecally administered ziconotide, a selective blocker of neuronal N-type voltage-sensitive calcium channels, with morphine on nociception in rats. Pain, 2000, 84, 271-281.	4.2	128
2	Effects of intrathecal administration of ziconotide, a selective neuronal N-type calcium channel blocker, on mechanical allodynia and heat hyperalgesia in a rat model of postoperative pain. Pain, 2000, 84, 151-158.	4.2	99
3	Activation of Spinal Glucagon-Like Peptide-1 Receptors Specifically Suppresses Pain Hypersensitivity. Journal of Neuroscience, 2014, 34, 5322-5334.	3.6	98
4	Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal $\hat{l}\pm3$ glycine receptors. Pain, 2013, 154, 2452-2462.	4.2	86
5	Spinal transient receptor potential ankyrin 1 channel contributes to central pain hypersensitivity in various pathophysiological conditions in the rat. Pain, 2011, 152, 582-591.	4.2	79
6	Methylglyoxal mediates streptozotocin-induced diabetic neuropathic pain via activation of the peripheral TRPA1 and Nav1.8 channels. Metabolism: Clinical and Experimental, 2016, 65, 463-474.	3.4	67
7	Geniposide and its iridoid analogs exhibit antinociception by acting at the spinal GLP-1 receptors. Neuropharmacology, 2014, 84, 31-45.	4.1	61
8	EGT1442, a potent and selective SGLT2 inhibitor, attenuates blood glucose and HbA1c levels in db/db mice and prolongs the survival of stroke-prone rats. Pharmacological Research, 2011, 63, 284-293.	7.1	57
9	Autocrine Interleukin-10 Mediates Glucagon-Like Peptide-1 Receptor-Induced Spinal Microglial Î ² -Endorphin Expression. Journal of Neuroscience, 2017, 37, 11701-11714.	3.6	57
10	A Series of d-Amino Acid Oxidase Inhibitors Specifically Prevents and Reverses Formalin-Induced Tonic Pain in Rats. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 282-293.	2.5	55
11	Shanzhiside methylester, the principle effective iridoid glycoside from the analgesic herb Lamiophlomis rotata, reduces neuropathic pain by stimulating spinal microglial β-endorphin expression. Neuropharmacology, 2016, 101, 98-109.	4.1	54
12	Increase by N ^G â€nitroâ€Lâ€arginine methyl ester (Lâ€NAME) of resistance to venous return in rats. British Journal of Pharmacology, 1995, 114, 1454-1458.	5.4	51
13	The nonâ€peptide <scp>GLP</scp> â€1 receptor agonist <scp>WB</scp> 4â€24 blocks inflammatory nociception by stimulating <scp>β</scp> â€endorphin release from spinal microglia. British Journal of Pharmacology, 2015, 172, 64-79.	5.4	51
14	Spinal interleukin-10 produces antinociception in neuropathy through microglial \hat{l}^2 -endorphin expression, separated from antineuroinflammation. Brain, Behavior, and Immunity, 2018, 73, 504-519.	4.1	51
15	Siteâ€specific PEGylation of exenatide analogues markedly improved their glucoregulatory activity. British Journal of Pharmacology, 2011, 163, 399-412.	5.4	50
16	Spinal d-Amino Acid Oxidase Contributes to Neuropathic Pain in Rats. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 248-254.	2.5	47
17	<scp>d</scp> â€Amino acid oxidaseâ€mediated increase in spinal hydrogen peroxide is mainly responsible for formalinâ€induced tonic pain. British Journal of Pharmacology, 2012, 165, 1941-1955.	5.4	46
18	<i>Lamiophlomis rotata</i> , an Orally Available Tibetan Herbal Painkiller, Specifically Reduces Pain Hypersensitivity States through the Activation of Spinal Glucagon-like Peptide-1 Receptors. Anesthesiology, 2014, 121, 835-851.	2.5	46

#	Article	IF	CITATIONS
19	Bullatine A stimulates spinal microglial dynorphin A expression to produce anti-hypersensitivity in a variety of rat pain models. Journal of Neuroinflammation, 2016, 13, 214.	7.2	45
20	Pain-related behavior following REM sleep deprivation in the rat: Influence of peripheral nerve injury, spinal glutamatergic receptors and nitric oxide. Brain Research, 2007, 1148, 105-112.	2.2	43
21	Aconitum-Derived Bulleyaconitine A Exhibits Antihypersensitivity Through Direct Stimulating Dynorphin A Expression in Spinal Microglia. Journal of Pain, 2016, 17, 530-548.	1.4	43
22	Gelsemium analgesia and the spinal glycine receptor/allopregnanolone pathway. Fìtoterapìâ, 2015, 100, 35-43.	2.2	42
23	Cynandione A attenuates neuropathic pain through p38 \hat{l}^2 MAPK-mediated spinal microglial expression of \hat{l}^2 -endorphin. Brain, Behavior, and Immunity, 2017, 62, 64-77.	4.1	41
24	Both classic Gs-cAMP/PKA/CREB and alternative Gs-cAMP/PKA/p38β/CREB signal pathways mediate exenatide-stimulated expression of M2 microglial markers. Journal of Neuroimmunology, 2018, 316, 17-22.	2.3	40
25	Mechanism of the vasodilator action of calcitonin geneâ€related peptide in conscious rats. British Journal of Pharmacology, 1992, 106, 45-48.	5.4	38
26	Inhibition of d-Amino-Acid Oxidase Activity Induces Pain Relief in Mice. Cellular and Molecular Neurobiology, 2008, 28, 581-591.	3.3	37
27	Lappaconitine, a C18-diterpenoid alkaloid, exhibits antihypersensitivity in chronic pain through stimulation of spinal dynorphin A expression. Psychopharmacology, 2018, 235, 2559-2571.	3.1	37
28	Contributions of spinal d-amino acid oxidase to bone cancer pain. Amino Acids, 2012, 43, 1905-1918.	2.7	36
29	Dezocine exhibits antihypersensitivity activities in neuropathy through spinal $\hat{l}\frac{1}{4}$ -opioid receptor activation and norepinephrine reuptake inhibition. Scientific Reports, 2017, 7, 43137.	3.3	35
30	Low frequency electroacupuncture alleviates neuropathic pain by activation of spinal microglial IL- $10/\hat{l}^2$ -endorphin pathway. Biomedicine and Pharmacotherapy, 2020, 125, 109898.	5.6	34
31	Possible dependence of pressor and heart rate effects of N ^G â€nitroâ€ <scp>l</scp> â€arginine on autonomic nerve activity. British Journal of Pharmacology, 1991, 103, 2004-2008.	5.4	32
32	Peptidic exenatide and herbal catalpol mediate neuroprotection via the hippocampal GLP-1 receptor \hat{l}^2 -endorphin pathway. Pharmacological Research, 2015, 102, 276-285.	7.1	32
33	Morroniside, a secoiridoid glycoside from <scp><i>Cornus officinalis</i></scp> <i>,</i> attenuates neuropathic pain by activation of spinal glucagonâ€ike peptideâ€i receptors. British Journal of Pharmacology, 2017, 174, 580-590.	5.4	32
34	Inhibitory actions of diphenyleneiodonium on endotheliumâ€dependent vasodilatations ⟨i⟩in vitro⟨ i⟩ and ⟨i⟩in vivo⟨ i⟩. British Journal of Pharmacology, 1993, 110, 1232-1238.	5.4	31
35	Intrathecal administration of a gap junction decoupler, an inhibitor of Na+–K+–2Clâ^' cotransporter 1, or a GABAA receptor agonist attenuates mechanical pain hypersensitivity induced by REM sleep deprivation in the rat. Pharmacology Biochemistry and Behavior, 2010, 97, 377-383.	2.9	31
36	Liposome-encapsulated clodronate specifically depletes spinal microglia and reduces initial neuropathic pain. Biochemical and Biophysical Research Communications, 2018, 499, 499-505.	2.1	31

#	Article	IF	CITATIONS
37	Role of spinal 5-HT receptors in cutaneous hypersensitivity induced by REM sleep deprivation. Pharmacological Research, 2008, 57, 469-475.	7.1	30
38	Ester Hydrolysis Differentially Reduces Aconitine-Induced Anti-hypersensitivity and Acute Neurotoxicity: Involvement of Spinal Microglial Dynorphin Expression and Implications for Aconitum Processing. Frontiers in Pharmacology, 2016, 7, 367.	3 . 5	30
39	Identification of a Novel Spinal Dorsal Horn Astroglial <scp>d</scp> -Amino Acid Oxidase–Hydrogen Peroxide Pathway Involved in Morphine Antinociceptive Tolerance. Anesthesiology, 2014, 120, 962-975.	2.5	29
40	d-DOPA IS UNIDIRECTIONALLY CONVERTED TO I-DOPA BY d-AMINO ACID OXIDASE, FOLLOWED BY DOPA TRANSAMINASE. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 1042-1046.	1.9	28
41	The spinal microglial IL- $10/\hat{l}^2$ -endorphin pathway accounts for cinobufagin-induced mechanical antiallodynia in bone cancer pain following activation of $\hat{l}\pm7$ -nicotinic acetylcholine receptors. Journal of Neuroinflammation, 2020, 17, 75.	7.2	28
42	Interactions of the potent d-amino acid oxidase inhibitor CBIO with morphine in pain and tolerance to analgesia. Neuropharmacology, 2012, 63, 460-468.	4.1	27
43	$p38\hat{l}^2$ Mitogen-Activated Protein Kinase Signaling Mediates Exenatide-Stimulated Microglial \hat{l}^2 -Endorphin Expression. Molecular Pharmacology, 2017, 91, 451-463.	2.3	27
44	Activation of GPR40 produces mechanical antiallodynia via the spinal glial interleukin- $10/\hat{l}^2$ -endorphin pathway. Journal of Neuroinflammation, 2019, 16, 84.	7.2	27
45	Down-regulation of spinal d-amino acid oxidase expression blocks formalin-induced tonic pain. Biochemical and Biophysical Research Communications, 2012, 421, 501-507.	2.1	26
46	Molecular signaling underlying bulleyaconitine A (BAA)-induced microglial expression of prodynorphin. Scientific Reports, 2017, 7, 45056.	3.3	25
47	Spinal D-amino acid oxidase contributes to mechanical pain hypersensitivity induced by sleep deprivation in the rat. Pharmacology Biochemistry and Behavior, 2013, 111, 30-36.	2.9	24
48	Gelsemine and koumine, principal active ingredients of Gelsemium, exhibit mechanical antiallodynia via spinal glycine receptor activation-induced allopregnanolone biosynthesis. Biochemical Pharmacology, 2019, 161, 136-148.	4.4	23
49	Vascular pharmacology of methylene blue <i>in vitro</i> and <i>in vivo</i> : a comparison with N ^G â€nitroâ€ <scp>I</scp> â€arginine and diphenyleneiodonium. British Journal of Pharmacology, 1995, 114, 194-202.	5.4	21
50	Biological Implications of Oxidation and Unidirectional Chiral Inversion of D-amino Acids. Current Drug Metabolism, 2012, 13, 321-331.	1.2	21
51	Renal d-Amino Acid Oxidase Mediates Chiral Inversion of NG-Nitro-d-arginine. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 1090-1096.	2.5	19
52	Acupuncture/Electroacupuncture as an Alternative in Current Opioid Crisis. Chinese Journal of Integrative Medicine, 2020, 26, 643-647.	1.6	19
53	Pain Assessment Using the Rat and Mouse Formalin Tests. Bio-protocol, 2014, 4, .	0.4	19
54	Potential role of spinal TRPA1 channels in antinociceptive tolerance to spinally administered morphine. Pharmacological Reports, 2016, 68, 472-475.	3.3	18

#	Article	IF	Citations
55	Spinal microglial βâ€endorphin signaling mediates ILâ€10 and exenatideâ€induced inhibition of synaptic plasticity in neuropathic pain. CNS Neuroscience and Therapeutics, 2021, 27, 1157-1172.	3.9	18
56	Concurrent bullatine A enhances morphine antinociception and inhibits morphine antinociceptive tolerance by indirect activation of spinal \hat{l}^2 -opioid receptors. Journal of Ethnopharmacology, 2017, 196, 151-159.	4.1	17
57	Halothane inhibits the pressor effect of diphenyleneiodonium. British Journal of Pharmacology, 1993, 109, 1186-1191.	5.4	16
58	Induced epigenetic modifications of the promoter chromatin silence survivin and inhibit tumor growth. Biochemical and Biophysical Research Communications, 2010, 393, 592-597.	2.1	16
59	Microglial IL-10 and \hat{I}^2 -endorphin expression mediates gabapentinoids antineuropathic pain. Brain, Behavior, and Immunity, 2021, 95, 344-361.	4.1	16
60	Contributions of spinal d-amino acid oxidase to chronic morphine-induced hyperalgesia. Journal of Pharmaceutical and Biomedical Analysis, 2015, 116, 131-138.	2.8	15
61	Involvement of Oxytocin Receptor/Erk/MAPK Signaling in the mPFC in Early Life Stress-Induced Autistic-Like Behaviors. Frontiers in Cell and Developmental Biology, 2020, 8, 564485.	3.7	15
62	Lemairamin, isolated from the Zanthoxylum plants, alleviates pain hypersensitivity via spinal $\hat{l}\pm7$ nicotinic acetylcholine receptors. Biochemical and Biophysical Research Communications, 2020, 525, 1087-1094.	2.1	15
63	Histone deacetylation directs DNA methylation in survivin gene silencing. Biochemical and Biophysical Research Communications, 2011, 404, 268-272.	2.1	13
64	Local protective effects of oral 45S5 bioactive glass on gastric ulcers in experimental animals. Journal of Materials Science: Materials in Medicine, 2013, 24, 803-809.	3.6	13
65	Epidural Sustained Release Ropivacaine Prolongs Anti-Allodynia and Anti-Hyperalgesia in Developing and Established Neuropathic Pain. PLoS ONE, 2015, 10, e0117321.	2.5	12
66	Actions of lead on transmitter release at mouse motor nerve terminals. Pflugers Archiv European Journal of Physiology, 1991, 419, 274-280.	2.8	11
67	Regulation of Gli2 stability by deubiquitinase OTUB2. Biochemical and Biophysical Research Communications, 2018, 505, 113-118.	2.1	11
68	Thalidomide alleviates neuropathic pain through microglial IL- $10/\hat{l}^2$ -endorphin signaling pathway. Biochemical Pharmacology, 2021, 192, 114727.	4.4	11
69	Mechanical antihypersensitivity effect induced by repeated spinal administrations of a TRPA1 antagonist or a gap junction decoupler in peripheral neuropathy. Pharmacology Biochemistry and Behavior, 2016, 150-151, 57-67.	2.9	10
70	Dual $\hat{1}\frac{1}{4}$ -opioid receptor and norepinephrine reuptake mechanisms contribute to dezocine- and tapentadol-induced mechanical antiallodynia in cancer pain. European Journal of Pharmacology, 2020, 876, 173062.	3.5	10
71	Synergistic interaction between butorphanol and dexmedetomidine in antinociception. European Journal of Pharmaceutical Sciences, 2020, 149, 105322.	4.0	10
72	A comparison of the inhibitory effects of sodium nitroprusside, pinacidil and nifedipine on pressor response to N ^G â€nitroâ€ <scp>I</scp> â€arginine. British Journal of Pharmacology, 1993, 108, 398-404.	5.4	9

#	Article	IF	CITATIONS
73	Intrathecal administration of antioxidants attenuates mechanical pain hypersensitivity induced by REM sleep deprivation in the rat. Scandinavian Journal of Pain, 2011, 2, 64-69.	1.3	9
74	Synthesis and Biological Evaluation of $4\hat{l}^2$ -N-Acetylamino Substituted Podophyllotoxin Derivatives as Novel Anticancer Agents. Frontiers in Chemistry, 2019, 7, 253.	3.6	9
75	Bulleyaconitine A Inhibits Visceral Nociception and Spinal Synaptic Plasticity through Stimulation of Microglial Release of Dynorphin A. Neural Plasticity, 2020, 2020, 1-13.	2.2	9
76	Protopanaxadiol alleviates neuropathic pain by spinal microglial dynorphin A expression following glucocorticoid receptor activation. British Journal of Pharmacology, 2021, 178, 2976-2997.	5.4	9
77	Cynandione A Alleviates Neuropathic Pain Through $\hat{l}\pm 7$ -nAChR-Dependent IL- $10/\hat{l}^2$ -Endorphin Signaling Complexes. Frontiers in Pharmacology, 2020, 11, 614450.	3.5	8
78	Bulleyaconitine A Exerts Antianxiety and Antivisceral Hypersensitivity Effects. Frontiers in Pharmacology, 2020, 11, 328.	3.5	7
79	Microglial Activation of GLP-1R Signaling in Neuropathic Pain Promotes Gene Expression Adaption Involved in Inflammatory Responses. Neural Plasticity, 2021, 2021, 1-12.	2.2	7
80	Involvement of d â€amino acid oxidase in cerebral ischaemia induced by transient occlusion of the middle cerebral artery in mice. British Journal of Pharmacology, 2019, 176, 3336-3349.	5.4	6
81	Cynandione A and PHA-543613 inhibit inflammation and stimulate macrophageal IL-10 expression following $\hat{l}\pm7$ nAChR activation. Biochemical Pharmacology, 2021, 190, 114600.	4.4	6
82	Discovery and analgesic evaluation of 8-chloro-1,4-dihydropyrido[2,3-b]pyrazine-2,3-dione as a novel potent d-amino acid oxidase inhibitor. European Journal of Medicinal Chemistry, 2016, 117, 19-32.	5.5	5
83	Comparative study of dezocine, pentazocine and tapentadol on antinociception and physical dependence. Life Sciences, 2021, 285, 119996.	4.3	4
84	Biological activation of NG-nitro-D-arginine by kidney homogenate. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 495-499.	3.0	3
85	Indispensable but Insufficient Role of Renal D-Amino Acid Oxidase in Chiral Inversion of NG-Nitro-D-arginine. Chemistry and Biodiversity, 2010, 7, 1413-1423.	2.1	3
86	Mouse strain specificity of DAAO inhibitorsâ€mediated antinociception. Pharmacology Research and Perspectives, 2021, 9, e00727.	2.4	3
87	Bilateral kidney ligation abolishes pressor response to NG-nitro-d-arginine. European Journal of Pharmacology, 1999, 366, 175-179.	3.5	2
88	Beneficial effects of natural Jeju groundwaters on lipid metabolism in high-fat diet-induced hyperlipidemic rats. Nutrition Research and Practice, 2014, 8, 165.	1.9	2
89	Bulleyaconitine A Inhibits Morphine-Induced Withdrawal Symptoms, Conditioned Place Preference, and Locomotor Sensitization Via Microglial Dynorphin A Expression. Frontiers in Pharmacology, 2021, 12, 620926.	3.5	2
90	Dexmedetomidine attenuates lipopolysaccharide-induced inflammation through macrophageal IL-10 expression following α7 nAchR activation. International Immunopharmacology, 2022, 109, 108920.	3.8	2

#	Article	IF	CITATIONS
91	Effects of Anaesthetic Agents on Pressor Response to \hat{I}^2 -Blockers in the Rat. Journal of Pharmacy and Pharmacology, 2011, 44, 34-38.	2.4	1
92	Oral JS-38, a metabolite from Xenorhabdus sp., has both anti-tumor activity and the ability to elevate peripheral neutrophils. Chinese Journal of Natural Medicines, 2014, 12, 768-776.	1.3	1
93	Beneficial effects of natural Jeju groundwaters on lipid metabolism in high-fat diet-induced hyperlipidemic rats. Nutrition Research and Practice, 2014, 8, 165.	1.9	O