Tanel Punga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2663380/publications.pdf Version: 2024-02-01

516710 395702 1,194 43 16 33 h-index citations g-index papers 43 43 43 1641 docs citations times ranked citing authors all docs

TANEL PUNCA

#	Article	IF	CITATIONS
1	Structural Insights into Human Adenovirus Type 4 Virus-Associated RNA I. International Journal of Molecular Sciences, 2022, 23, 3103.	4.1	0
2	Activation of the Ca2+/NFAT Pathway by Assembly of Hepatitis C Virus Core Protein into Nucleocapsid-like Particles. Viruses, 2022, 14, 761.	3.3	0
3	Hepatitis C Virus Core Protein Down-Regulates Expression of Src-Homology 2 Domain Containing Protein Tyrosine Phosphatase by Modulating Promoter DNA Methylation. Viruses, 2021, 13, 2514.	3.3	5
4	miR-1933-3p is upregulated in skeletal muscles of MuSK+ EAMG mice and affects Impa1 and Mrpl27. Neuroscience Research, 2020, 151, 46-52.	1.9	6
5	Adenovirus in the omics era â \in " a multipronged strategy. FEBS Letters, 2020, 594, 1879-1890.	2.8	8
6	Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections. Viruses, 2020, 12, 1322.	3.3	24
7	Synthesis, Structure, and Function of Human Adenovirus Small Non-Coding RNAs. Viruses, 2020, 12, 1182.	3.3	13
8	Estrogen Receptor, Inflammatory, and FOXO Transcription Factors Regulate Expression of Myasthenia Gravis-Associated Circulating microRNAs. Frontiers in Immunology, 2020, 11, 151.	4.8	25
9	Circulating miRNAs as Potential Biomarkers in Myasthenia Gravis: Tools for Personalized Medicine. Frontiers in Immunology, 2020, 11, 213.	4.8	22
10	Cellular Zinc Finger Protein 622 Hinders Human Adenovirus Lytic Growth and Limits Binding of the Viral pVII Protein to Virus DNA. Journal of Virology, 2019, 93, .	3.4	15
11	Thymectomy lowers the myasthenia gravis biomarker miR-150-5p. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e450.	6.0	25
12	Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII. Journal of Virology, 2018, 92, .	3.4	16
13	Circulating microRNAs as potential biomarkers in myasthenia gravis patients. Annals of the New York Academy of Sciences, 2018, 1412, 33-40.	3.8	36
14	In Situ Detection of Adenovirus DNA and mRNA in Individual Cells. Current Protocols in Microbiology, 2018, 49, e54.	6.5	2
15	Simultaneous Single-Cell <i>In Situ</i> Analysis of Human Adenovirus Type 5 DNA and mRNA Expression Patterns in Lytic and Persistent Infection. Journal of Virology, 2017, 91, .	3.4	16
16	The adenovirus L4-22K protein regulates transcription and RNA splicing via a sequence-specific single-stranded RNA binding. Nucleic Acids Research, 2017, 45, 1731-1742.	14.5	1
17	Expression profile of Epstein-Barr virus and human adenovirus small RNAs in tonsillar B and T lymphocytes. PLoS ONE, 2017, 12, e0177275.	2.5	5
18	Disease specific enrichment of circulating let-7 family microRNA in MuSK+ myasthenia gravis. Journal of Neuroimmunology, 2016, 292, 21-26.	2.3	44

TANEL PUNGA

#	Article	IF	CITATIONS
19	Clamping of RNA with PNA enables targeting of microRNA. Organic and Biomolecular Chemistry, 2016, 14, 5210-5213.	2.8	6
20	Distribution and Molecular Characterization of Human Adenovirus and Epstein-Barr Virus Infections in Tonsillar Lymphocytes Isolated from Patients Diagnosed with Tonsillar Diseases. PLoS ONE, 2016, 11, e0154814.	2.5	22
21	Efficient Isolation Protocol for B and T Lymphocytes from Human Palatine Tonsils. Journal of Visualized Experiments, 2015, , .	0.3	8
22	A suppressive effect of Sp1 recruitment to the first leader 5′ splice site region on L4-22K-mediated activation of the adenovirus major late promoter. Virus Research, 2015, 210, 133-140.	2.2	3
23	Genome-Engineering Tools to Establish Accurate Reporter Cell Lines That Enable Identification of Therapeutic Strategies to Treat Friedreich's Ataxia. Journal of Biomolecular Screening, 2015, 20, 760-767.	2.6	0
24	Complementation of the human adenovirus type 5 VA RNAI defect by the Vaccinia virus E3L protein and serotype-specific VA RNAIs. Virology, 2015, 485, 25-35.	2.4	5
25	Opposite expression of <i>CYP51A1</i> and its natural antisense transcript <i>AluCYP51A1</i> in adenovirus type 37 infected retinal pigmented epithelial cells. FEBS Letters, 2015, 589, 1383-1388.	2.8	6
26	Disease specific signature of circulating miR-150-5p and miR-21-5p in myasthenia gravis patients. Journal of the Neurological Sciences, 2015, 356, 90-96.	0.6	56
27	Small RNA Sequence Analysis of Adenovirus VA RNA-Derived MiRNAs Reveals an Unexpected Serotype-Specific Difference in Structure and Abundance. PLoS ONE, 2014, 9, e105746.	2.5	16
28	A splice variant of the human phosphohistidine phosphatase 1 (PHPT1) is degraded by the proteasome. International Journal of Biochemistry and Cell Biology, 2014, 57, 69-75.	2.8	5
29	Circulating mi <scp>RNA</scp> s in myasthenia gravis: miRâ€150â€5p as a new potential biomarker. Annals of Clinical and Translational Neurology, 2014, 1, 49-58.	3.7	62
30	Muscle-specific regulation of the mTOR signaling pathway in MuSK antibody seropositive (MuSK+) experimental autoimmune Myasthenia gravis (EAMG). Neuroscience Research, 2013, 77, 102-109.	1.9	5
31	Old and new functions for the adenovirus virus-associated RNAs. Future Virology, 2013, 8, 343-356.	1.8	17
32	The adenovirus VA RNA-derived miRNAs are not essential for lytic virus growth in tissue culture cells. Nucleic Acids Research, 2013, 41, 4802-4812.	14.5	43
33	Adenovirus Precursor pVII Protein Stability Is Regulated By Its Propeptide Sequence. PLoS ONE, 2013, 8, e80617.	2.5	18
34	Two Cellular Protein Kinases, DNA-PK and PKA, Phosphorylate the Adenoviral L4-33K Protein and Have Opposite Effects on L1 Alternative RNA Splicing. PLoS ONE, 2012, 7, e31871.	2.5	11
35	Dicer associates with chromatin to repress genome activity in Schizosaccharomyces pombe. Nature Structural and Molecular Biology, 2011, 18, 94-99.	8.2	80
36	Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation. EMBO Molecular Medicine, 2010, 2, 120-129.	6.9	113

TANEL PUNGA

#	Article	IF	CITATIONS
37	Novel genes in cell cycle control and lipid metabolism with dynamically regulated binding sites for sterol regulatory elementâ€binding protein 1 and RNA polymerase 11 in HepC2 cells detected by chromatin immunoprecipitation with microarray detection. FEBS Journal, 2009, 276, 1878-1890.	4.7	22
38	Phosphorylation and Ubiquitination of the Transcription Factor Sterol Regulatory Element-binding Protein-1 in Response to DNA Binding. Journal of Biological Chemistry, 2006, 281, 25278-25286.	3.4	106
39	Hyperphosphorylation regulates the activity of SREBP1 during mitosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11681-11686.	7.1	57
40	YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12165-12170.	7.1	195
41	Adenovirus 2 E1B-55K protein relieves p53-mediated transcriptional repression of the survivin and MAP4 promoters. FEBS Letters, 2003, 552, 214-218.	2.8	12
42	Functional inactivation of the SR family of splicing factors during a vaccinia virus infection. EMBO Reports, 2002, 3, 1088-1093.	4.5	29
43	The adenovirus-2 E1B-55K protein interacts with a mSin3A/histone deacetylase 1 complex. FEBS Letters, 2000, 476, 248-252.	2.8	34