Michael J Brewer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/266271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
2	Sugarcane Aphid (Hemiptera: Aphididae): A New Pest on Sorghum in North America. Journal of Integrated Pest Management, 2016, 7, 12.	2.0	182
3	Sugarcane Aphid (Hemiptera: Aphididae): Host Range and Sorghum Resistance Including Cross-Resistance From Greenbug Sources. Journal of Economic Entomology, 2015, 108, 576-582.	1.8	109
4	Approaches and Incentives to Implement Integrated Pest Management that Addresses Regional and Environmental Issues. Annual Review of Entomology, 2012, 57, 41-59.	11.8	85
5	The role of natural enemy guilds in Aphis glycines suppression. Biological Control, 2008, 45, 368-379.	3.0	79
6	Unmanned aircraft system-derived crop height and normalized difference vegetation index metrics for sorghum yield and aphid stress assessment. Journal of Applied Remote Sensing, 2017, 11, 026035.	1.3	72
7	Assessing Lodging Severity over an Experimental Maize (Zea mays L.) Field Using UAS Images. Remote Sensing, 2017, 9, 923.	4.0	72
8	Sugarcane Aphid Population Growth, Plant Injury, and Natural Enemies on Selected Grain Sorghum Hybrids in Texas and Louisiana. Journal of Economic Entomology, 2017, 110, 2109-2118.	1.8	69
9	Temporal Estimates of Crop Growth in Sorghum and Maize Breeding Enabled by Unmanned Aerial Systems. The Plant Phenome Journal, 2018, 1, 1-10.	2.0	51
10	Hymenopteran Parasitoids and Dipteran Predators Found Using Soybean Aphid After Its Midwestern United States Invasion. Annals of the Entomological Society of America, 2007, 100, 196-205.	2.5	46
11	Relationship of Soybean Aphid (Hemiptera: Aphididae) to Soybean Plant Nutrients, Landscape Structure, and Natural Enemies. Environmental Entomology, 2010, 39, 31-41.	1.4	45
12	Microsatellite Markers Reveal a Predominant Sugarcane Aphid (Homoptera: Aphididae) Clone is Found on Sorghum in Seven States and One Territory of the USA. Crop Science, 2017, 57, 2064-2072.	1.8	41
13	Development of Economic Thresholds for Sugarcane Aphid (Hemiptera: Aphididae) in Susceptible Grain Sorghum Hybrids. Journal of Economic Entomology, 2019, 112, 1251-1259.	1.8	37
14	Seasonal Abundance of Resident Parasitoids and Predatory Flies and Corresponding Soybean Aphid Densities, with Comments on Classical Biological Control of Soybean Aphid in the Midwest. Journal of Economic Entomology, 2008, 101, 278-287.	1.8	34
15	Invasive Cereal Aphids of North America: Ecology and Pest Management. Annual Review of Entomology, 2019, 64, 73-93.	11.8	32
16	Recovery and Range Expansion of Parasitoids (Hymenoptera: Aphelinidae and Braconidae) Released for Biological Control of <i>Diuraphis noxia</i> (Homoptera: Aphididae) in Wyoming. Environmental Entomology, 2001, 30, 578-588.	1.4	31
17	A landscape view of cereal aphid parasitoid dynamics reveals sensitivity to farm- and region-scale vegetation structure. European Journal of Entomology, 2008, 105, 503-511.	1.2	29
19	Cotton Insect Peet Management Agronomy 2015 509-546	0.2	28

18 Cotton Insect Pest Management. Agronomy, 2015, , 509-546.

0.2 28

#	Article	IF	CITATIONS
19	Integrated modelling of the life cycle and aeroecology of wind-borne pests in temporally-variable spatially-heterogeneous environment. Ecological Modelling, 2019, 399, 23-38.	2.5	28
20	Title is missing!. BioControl, 1999, 43, 479-491.	2.0	25
21	Characterizing canopy height with UAS structure-from-motion photogrammetry—results analysis of a maize field trial with respect to multiple factors. Remote Sensing Letters, 2018, 9, 753-762.	1.4	24
22	Landscape Context Affects Aphid Parasitism by Lysiphlebus testaceipes (Hymenoptera: Aphidiinae) in Wheat Fields. Environmental Entomology, 2018, 47, 803-811.	1.4	23
23	Integration of biological control and transgenic insect protection for mitigation of mycotoxins in corn. Crop Protection, 2017, 98, 108-115.	2.1	22
24	Hymenopteran parasitoids and dipteran predators of Diuraphis noxia in the west-central Great Plains of North America: Species records and geographic range. BioControl, 2005, 50, 97-111.	2.0	20
25	Species Composition and Abundance of the Natural Enemies of Sugarcane Aphid, Melanaphis sacchari (Zehnter) (Hemiptera: Aphididae), on Sorghum in Texas. Proceedings of the Entomological Society of Washington, 2019, 121, 657.	0.2	20
26	Effect of different wheat production systems on the presence of two parasitoids (Hymenoptera:) Tj ETQq0 0 0 rgB Ecosystems and Environment, 2002, 92, 201-210.	3T /Overlo 5.3	ck 10 Tf 50 19
27	Habitat Affinity of Resident Natural Enemies of the Invasive <i>Aphis glycines</i> (Hemiptera:) Tj ETQq1 2010, 103, 583-596.	1 0.7843 1.8	314 rgBT /0 18
28	Use of a geographic information system to produce pest monitoring maps for south Texas cotton and sorghum land managers. Crop Protection, 2017, 101, 50-57.	2.1	16
29	Native Pollinators (Hymenoptera: Anthophila) in Cotton Grown in the Gulf South, United States. Agronomy, 2020, 10, 698.	3.0	16
30	Seasonal Abundance of Resident Parasitoids and Predatory Flies and Corresponding Soybean Aphid Densities, with Comments on Classical Biological Control of Soybean Aphid in the Midwest. Journal of Economic Entomology, 2008, 101, 278-287.	1.8	16
31	Plant Growth Stage-Specific Injury and Economic Injury Level for Verde Plant Bug, <i>Creontiades signatus</i> (Hemiptera: Miridae), on Cotton: Effect of Bloom Period of Infestation. Journal of Economic Entomology, 2013, 106, 2077-2083.	1.8	15
32	Pollination by Non-Apis Bees and Potential Benefits in Self-Pollinating Crops. Annals of the Entomological Society of America, 2021, 114, 257-266.	2.5	15
33	The Case and Opportunity for Public-Supported Financial Incentives to Implement Integrated Pest Management. Journal of Economic Entomology, 2004, 97, 1782-1789.	1.8	14
34	Integrating Models of Atmospheric Dispersion and Crop-Pest Dynamics: Linking Detection of Local Aphid Infestations to Forecasts of Region-Wide Invasion of Cereal Crops. Annals of the Entomological Society of America, 2020, 113, 79-87.	2.5	14
35	A Comparison of Bt Transgene, Hybrid Background, Water Stress, and Insect Stress Effects on Corn Leaf and Ear Injury and Subsequent Yield. Environmental Entomology, 2014, 43, 828-839.	1.4	13
36	Development of Binomial Sequential Sampling Plans for Sugarcane Aphid (Hemiptera: Aphididae) in Commercial Grain Sorghum. Journal of Economic Entomology, 2020, 113, 1990-1998.	1.8	13

#	Article	IF	CITATIONS
37	Alfalfa Weevil (Coleoptera: Curculionidae) Larval Sampling: Comparison of Shake-Bucket and Sweep-Net Methods and Effect of Training. Journal of Economic Entomology, 2002, 95, 748-753.	1.8	12
38	A Sugarcane Aphid "Super lone―Predominates on Sorghum and Johnsongrass from Four US States. Crop Science, 2018, 58, 2533-2541.	1.8	11
39	Verde Plant Bug (Hemiptera: Miridae) Feeding Injury to Cotton Bolls Characterized by Boll Age, Size, and Damage Ratings. Journal of Economic Entomology, 2013, 106, 189-195.	1.8	9
40	UAS imaging for automated crop lodging detection: a case study over an experimental maize field. Proceedings of SPIE, 2017, , .	0.8	9
41	Sampling Strategies for Square and Boll-Feeding Plant Bugs (Hemiptera: Miridae) Occurring on Cotton. Journal of Economic Entomology, 2012, 105, 896-905.	1.8	8
42	Learning Experiences in IPM Through Concise Instructional Videos. Journal of Integrated Pest Management, 2018, 9, .	2.0	8
43	Boll injury caused by leaffooted bug in late-season cotton. Crop Protection, 2019, 119, 214-218.	2.1	8
44	Modeling the dispersal of wind-borne pests: Sensitivity of infestation forecasts to uncertainty in parameterization of long-distance airborne dispersal. Agricultural and Forest Meteorology, 2021, 301-302, 108357.	4.8	8
45	Association of Insect-Derived Ear Injury With Yield and Aflatoxin of Maize Hybrids Varying in Bt Transgenes. Environmental Entomology, 2019, 48, 1401-1411.	1.4	7
46	Plant Response and Economic Injury Levels for a Boll-Feeding Sucking Bug Complex on Cotton. Journal of Economic Entomology, 2019, 112, 1227-1236.	1.8	7
47	A Native Bee, Melissodes tepaneca (Hymenoptera: Apidae), Benefits Cotton Production. Insects, 2020, 11, 487.	2.2	7
48	A Special Collection: Drones to Improve Insect Pest Management. Journal of Economic Entomology, 2021, 114, 1853-1856.	1.8	7
49	Comparison of Cotton Square and Boll Damage and Resulting Lint and Seed Loss Caused by Verde Plant Bug, <i>Creontiades signatus</i> ¹ . Southwestern Entomologist, 2012, 37, 437-447.	0.2	6
50	Single and Multiple In-Season Measurements as Indicators of At-Harvest Cotton Boll Damage Caused by Verde Plant Bug (Hemiptera: Miridae). Journal of Economic Entomology, 2013, 106, 1310-1316.	1.8	6
51	Transmission of Cotton Seed and Boll Rotting Bacteria by the Verde Plant Bug (Hemiptera: Miridae). Journal of Economic Entomology, 2020, 113, 793-799.	1.8	6
52	Overview of Risk Factors and Strategies for Management of Insect-Derived Ear Injury and Aflatoxin Accumulation for Maize Grown in Subtropical Areas of North America. Journal of Integrated Pest Management, 2020, 11, .	2.0	6
53	Where do all the aphids go? A series of thought experiments within the context of area-wide pest management. Agricultural Systems, 2020, 185, 102957.	6.1	6
54	Multivariate analysis of sorghum volatiles for the fast screening of sugarcane aphid infestation. Journal of Asia-Pacific Entomology, 2020, 23, 901-908.	0.9	6

#	Article	IF	CITATIONS
55	Recruitment of Natural Enemies of the Invasive Sugarcane Aphid Vary Spatially and Temporally in Sorghum Fields in the Southern Great Plains of the USA. Southwestern Entomologist, 2021, 46, .	0.2	6
56	Field Assessment of Aphid Doubling Time and Yield of Sorghum Susceptible and Partially Resistant to Sugarcane Aphid (Hemiptera: Aphididae). Journal of Economic Entomology, 2021, 114, 2076-2087.	1.8	6
57	Toward near-real-time forecasts of airborne crop pests: Aphid invasions of cereal grains in North America. Computers and Electronics in Agriculture, 2020, 179, 105861.	7.7	6
58	Suppression of the Sugarcane Aphid, Melanaphis sacchari (Hemiptera: Aphididae), by Resident Natural Enemies on Susceptible and Resistant Sorghum Hybrids. Environmental Entomology, 2022, , .	1.4	6
59	Cotton water-deficit stress, age, and cultivars as moderating factors of cotton fleahopper abundance and yield loss. Crop Protection, 2016, 86, 56-61.	2.1	5
60	Opportunities, Experiences, and Strategies to Connect Integrated Pest Management to U.S. Department of Agriculture Conservation Programs. American Entomologist, 2009, 55, 140-146.	0.2	4
61	Cotton Square Morphology Offers New Insights into Host Plant Resistance to Cotton Fleahopper (Hemiptera: Miridae) in Upland Cotton. Journal of Economic Entomology, 2016, 109, 392-398.	1.8	4
62	Early Season Parasitism of Cereal Aphids1 in Wheat Fields and Field Borders. Southwestern Entomologist, 2019, 44, 11.	0.2	4
63	Recording within-cotton distribution of plant bug injury using plant mapping computer-based tools. Crop Protection, 2018, 112, 220-226.	2.1	3
64	Geographic Information System (GIS)-Based Mapping and Spatial Analyses Applied to Risk Assessment and Resource Allocation for Boll Weevil (Coleoptera: Curculionidae) Detection. Annals of the Entomological Society of America, 2020, 113, 71-78.	2.5	3
65	Sugarcane aphid, Melanaphis sacchari (Hemiptera: Aphididae), abundance on sorghum and johnsongrass in a laboratory and field setting. Crop Protection, 2021, 148, 105715.	2.1	3
66	Natural Enemies, Mediated by Landscape and Weather Conditions, Shape Response of the Sorghum Agroecosystem of North America to the Invasive Aphid Melanaphis sorghi. Frontiers in Insect Science, 2022, 2, .	2.1	3
67	Yield, Insect-Derived Ear Injury, and Aflatoxin Among Developmental and Commercial Maize Hybrids Adapted to the North American Subtropics. Journal of Economic Entomology, 2020, 113, 2950-2958.	1.8	2
68	Evaluation of Areawide Forecasts of Wind-borne Crop Pests: Sugarcane Aphid (Hemiptera: Aphididae) Infestations of Sorghum in the Great Plains of North America. Journal of Economic Entomology, 2022, 115, 863-868.	1.8	2
69	Parasitoids and Predators of the Invasive Aphid Melanaphis sorghi Found in Sorghum and Non-Crop Vegetation of the Sorghum Agroecosystem. Insects, 2022, 13, 606.	2.2	2
70	MULTI-platform uas imaging for crop height estimation: Performance analysis over an experimental maize field. , 2017, , .		1
71	Photoperiod-Specific Within-Plant Distribution of the Green Stink Bug (Hemiptera: Pentatomidae) on Cotton. Environmental Entomology, 2019, 48, 1234-1240.	1.4	1
72	Crop and Semi-Natural Habitat Configuration Affects Diversity and Abundance of Native Bees (Hymenoptera: Anthophila) in a Large-Field Cotton Agroecosystem. Insects, 2021, 12, 601.	2.2	1

#	Article	IF	CITATIONS
73	Tally-based thresholds as an alternative to density-based thresholds for sugarcane aphid, Melanaphis sacchari, (Hemiptera: Aphididae) in grain sorghum. Crop Protection, 2021, 148, 105749.	2.1	1
74	Simulating migration of wind-borne pests: "Deconstructing―representation of the emigration process. Ecological Modelling, 2021, 460, 109742.	2.5	1
75	Estimating the severity of sugarcane aphids infestation on sorghum with machine vision. International Journal of Precision Agricultural Aviation, 2018, 1, 89-96.	0.2	1
76	Complete Genome Sequence of <i>Serratia</i> sp. Strain CC119, Associated with Inner Cotton Boll Rot via Insect Vector Transmission. Microbiology Resource Announcements, 2020, 9, .	0.6	1
77	Assessing VIs Calculated From UAS-Acquired Multispectral Imaging to Detect Iron Chlorosis in Grain Sorghum. , 2019, , .		0
78	Field Edge and Field-to-Field Ecotone-Type Influences on Two Cotton Herbivores: Cotton Fleahopper, Pseudatomoscelis seriatus (Hemiptera: Miridae), and Verde Plant Bug, Creontiades signatus. Journal of Economic Entomology, 2020, 113, 2213-2222.	1.8	0