C David Pauza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2662614/publications.pdf

Version: 2024-02-01

394421 477307 1,215 30 19 29 citations h-index g-index papers 30 30 30 1613 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Human γÎ^T lymphocytes induce robust NK cell–mediated antitumor cytotoxicity through CD137 engagement. Blood, 2010, 116, 1726-1733.	1.4	170
2	Isopentenyl Pyrophosphate–Activated CD56+ γδ T Lymphocytes Display Potent Antitumor Activity toward Human Squamous Cell Carcinoma. Clinical Cancer Research, 2008, 14, 4232-4240.	7.0	143
3	A Neonatal Fc Receptor-Targeted Mucosal Vaccine Strategy Effectively Induces HIV-1 Antigen-Specific Immunity to Genital Infection. Journal of Virology, 2011, 85, 10542-10553.	3.4	96
4	Gamma Delta T Cell Therapy for Cancer: It Is Good to be Local. Frontiers in Immunology, 2018, 9, 1305.	4.8	80
5	Functional $\hat{l}^3\hat{l}$ T-lymphocyte Defect Associated with Human Immunodeficiency Virus Infections. Molecular Medicine, 1997, 3, 60-71.	4.4	74
6	γδT Cells in HIV Disease: Past, Present, and Future. Frontiers in Immunology, 2014, 5, 687.	4.8	66
7	In vitro stimulation with a non-peptidic alkylphosphate expands cells expressing Vgamma2-Jgamma1.2/Vdelta2 T-cell receptors. Immunology, 2001, 104, 19-27.	4.4	58
8	HIV envelope-mediated, CCR5/ \hat{l} ±4 \hat{l} 27-dependent killing of CD4-negative \hat{l} 3 \hat{l} 7 cells which are lost during progression to AIDS. Blood, 2011, 118, 5824-5831.	1.4	48
9	Association between Longer Duration of HIVâ€Suppressive Therapy and Partial Recovery of the Vγ2 T Cell Receptor Repertoire. Journal of Infectious Diseases, 2004, 189, 1482-1486.	4.0	43
10	Natural viral suppressors of HIV-1 have a unique capacity to maintain Î ³ Î [*] T cells. Aids, 2009, 23, 1955-1964.	2.2	43
11	Association between $\hat{V}^32\hat{V}^2$ T Cells and Disease Progression after Infection with Closely Related Strains of HIV in China. Clinical Infectious Diseases, 2008, 46, 1466-1472.	5.8	41
12	HIV-MediatedγÎT Cell Depletion Is Specific for Vγ2+Cells Expressing the Jγ1.2 Segment. AIDS Research and Human Retroviruses, 2003, 19, 21-29.	1.1	38
13	Gamma delta T cells from HIV+ donors can be expanded in vitro by zoledronate/interleukin-2 to become cytotoxic effectors for antibody-dependent cellular cytotoxicity. Cytotherapy, 2012, 14, 173-181.	0.7	36
14	Evolution and function of the TCR Vgamma9 chain repertoire: It's good to be public. Cellular Immunology, 2015, 296, 22-30.	3.0	35
15	Control of CD56 expression and tumor cell cytotoxicity in human Vγ2VÎ^2 T cells. BMC Immunology, 2009, 10, 50.	2.2	26
16	The $\hat{I}^3\hat{I}$ T-cell receptor repertoire is reconstituted in HIV patients after prolonged antiretroviral therapy. Aids, 2013, 27, 1557-1562.	2.2	26
17	Failure to restore the $V\hat{I}^32$ - $\hat{I}^31.2$ repertoire in HIV-infected men receiving highly active antiretroviral therapy (HAART). Clinical Immunology, 2008, 128, 349-357.	3.2	25
18	Prolonged PD1 Expression on Neonatal \hat{V} 2 Lymphocytes Dampens Proinflammatory Responses: Role of Epigenetic Regulation. Journal of Immunology, 2016, 197, 1884-1892.	0.8	23

#	Article	IF	CITATIONS
19	Human cord blood î³î´ <scp>T</scp> cells expressing public Vî³2 chains dominate the response to bisphosphonate plus interleukinâ€15. Immunology, 2013, 138, 346-360.	4.4	22
20	Human cytomegalovirus evades antibody-mediated immunity through endoplasmic reticulum-associated degradation of the FcRn receptor. Nature Communications, 2019, 10, 3020.	12.8	21
21	Levels of CD56+TIM-3- Effector CD8 T Cells Distinguish HIV Natural Virus Suppressors from Patients Receiving Antiretroviral Therapy. PLoS ONE, 2014, 9, e88884.	2.5	20
22	V <i>î3</i> 2V <i>î7</i> 2 Tâ€cell coâ€stimulation increases natural killer cell killing of monocyteâ€derived dendritic cells. Immunology, 2015, 144, 422-430.	4.4	17
23	Targeting Î ³ δT cells for immunotherapy of HIV disease. Future Virology, 2011, 6, 73-84.	1.8	16
24	The Vgamma2/Vdelta2 T-cell repertoire in Macaca fascicularis: functional responses to phosphoantigen stimulation by the Vgamma2/Jgamma1.2 subset. Immunology, 2005, 115, 197-205.	4.4	13
25	Interleukinâ€18 activates Vγ9Vδ2 ⁺ T cells from HIVâ€positive individuals: recovering the response to phosphoantigen. Immunology, 2017, 151, 385-394.	4.4	12
26	Cancer Diagnostic and Predictive Biomarkers 2016. BioMed Research International, 2017, 2017, 1-2.	1.9	9
27	An HIV Envelope gp120-Fc Fusion Protein Elicits Effector Antibody Responses in Rhesus Macaques. Vaccine Journal, 2017, 24, .	3.1	8
28	FcRn-Targeted Mucosal Vaccination against Influenza Virus Infection. Journal of Immunology, 2021, 207, 1310-1321.	0.8	5
29	Factors associated with high cardiovascular risk in a primarily African American, urban HIV-infected population. SAGE Open Medicine, 2017, 5, 205031211772564.	1.8	1
30	Cancer Diagnostic and Predictive Biomarkers 2015. BioMed Research International, 2015, 2015, 1-1.	1.9	0