Seyyed Alireza Mirkhani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2661873/publications.pdf

Version: 2024-02-01

24 papers 914 citations

471509 17 h-index 24 g-index

24 all docs

24 docs citations

times ranked

24

1039 citing authors

#	Article	IF	Citations
1	Improved synthesis of Ti ₃ C ₂ T _x MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale, 2021, 13, 3572-3580.	5.6	228
2	High Dielectric Constant and Low Dielectric Loss via Poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 707 Td (alco Materials & Samp; Interfaces, 2019, 11, 18599-18608.	hol)/Ti <sul 8.0</sul 	o>3C 157
3	Predictive Quantitative Structure–Property Relationship Model for the Estimation of Ionic Liquid Viscosity. Industrial & Damp; Engineering Chemistry Research, 2012, 51, 2470-2477.	3.7	53
4	Impact of synthesis temperature on morphology, rheology and electromagnetic interference shielding of CVD-grown carbon nanotube/polyvinylidene fluoride nanocomposites. Synthetic Metals, 2017, 230, 39-50.	3.9	45
5	Enhanced Dielectric Performance of Polymer Nanocomposites Based on CNT/MnO ₂ Nanowire Hybrid Nanostructure. Journal of Physical Chemistry C, 2017, 121, 8327-8334.	3.1	44
6	A simple correlation for prediction of heat capacities of ionic liquids. Fluid Phase Equilibria, 2013, 337, 73-82.	2.5	37
7	A QSPR model for prediction of diffusion coefficient of non-electrolyte organic compounds in air at ambient condition. Chemosphere, 2012, 86, 959-966.	8.2	32
8	Ionic liquids: Prediction of melting point by molecular-based model. Thermochimica Acta, 2012, 549, 17-34.	2.7	31
9	Prediction of surface tension of ionic liquids by molecular approach. Journal of Molecular Liquids, 2013, 179, 78-87.	4.9	31
10	Prediction of Standard Enthalpy of Combustion of Pure Compounds Using a Very Accurate Group-Contribution-Based Method. Energy & Energy & 2011, 25, 2651-2654.	5.1	29
11	Determination of the glass transition temperature of ionic liquids: A molecular approach. Thermochimica Acta, 2012, 543, 88-95.	2.7	27
12	An accurate model for the prediction of the glass transition temperature of ammonium based ionic liquids: A QSPR approach. Fluid Phase Equilibria, 2012, 324, 50-63.	2.5	25
13	Partitioning of alkaline protease from Bacillus licheniformis (ATCC 21424) using PEG–K2HPO4 aqueous two-phase system. Fluid Phase Equilibria, 2013, 337, 1-5.	2.5	24
14	A predictive quantitative structure–property relationship for glass transition temperature of 1,3-dialkyl imidazolium ionic liquids. Journal of Thermal Analysis and Calorimetry, 2013, 111, 235-246.	3.6	24
15	Determination of the normal boiling point of chemical compounds using a quantitative structure–property relationship strategy: Application to a very large dataset. Fluid Phase Equilibria, 2013, 354, 250-258.	2.5	23
16	(Liquid+liquid) equilibrium for ternary mixtures of {heptane+aromatic compounds+[EMpy][ESO4]} at T=298.15K. Journal of Chemical Thermodynamics, 2011, 43, 1530-1534.	2.0	18
17	A predictive quantitative structure–property relationship for glass transition temperature of 1,3-dialkyl imidazolium ionic liquids. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1639-1648.	3.6	17
18	QSPR Molecular Approach for Estimating Henry's Law Constants of Pure Compounds in Water at Ambient Conditions. Industrial & Engineering Chemistry Research, 2012, 51, 4764-4767.	3.7	15

#	ARTICLE	IF	CITATIONS
19	Liquid–liquid equilibrium (LLE) data for ternary mixtures of {aliphatic+p-xylene+[EMpy][ESO4]} at T=313.15K. Fluid Phase Equilibria, 2012, 332, 48-54.	2.5	14
20	Computation of Upper Flash Point of Chemical Compounds Using a Chemical Structure-Based Model. Industrial & Engineering Chemistry Research, 2012, 51, 5103-5107.	3.7	14
21	Electrochemically Exfoliated Graphite Nanosheet Films for Electromagnetic Interference Shields. ACS Applied Nano Materials, 2021, 4, 7221-7233.	5.0	12
22	A molecular-based model for prediction of liquid viscosity of pure organic compounds: A quantitative structure property relationship (QSPR) approach. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 359-364.	5.3	7
23	A chemical structure-based model for estimating speed of sound in liquids. Journal of Thermal Analysis and Calorimetry, 2014, 116, 529-538.	3.6	5
24	Impact of synthesis temperature on structure of carbon nanotubes and morphological and electrical characterization of their polymeric nanocomposites. AIP Conference Proceedings, 2017, , .	0.4	2