
George K Chandy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2661567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rearrangement of a unique Kv1.3 selectivity filter conformation upon binding of a drug. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	20
2	Histone acetylome-wide associations in immune cells from individuals with active Mycobacterium tuberculosis infection. Nature Microbiology, 2022, 7, 312-326.	13.3	9
3	Imaging Kv1.3 Expressing Memory T Cells as a Marker of Immunotherapy Response. Cancers, 2022, 14, 1217.	3.7	7
4	Structures of wild-type and H451N mutant human lymphocyte potassium channel KV1.3. Cell Discovery, 2021, 7, 39.	6.7	14
5	CD4+ T Cells Mediate the Development of Liver Fibrosis in High Fat Diet-Induced NAFLD in Humanized Mice. Frontiers in Immunology, 2020, 11, 580968.	4.8	57
6	Modulation of Lymphocyte Potassium Channel K _V 1.3 by Membrane-Penetrating, Joint-Targeting Immunomodulatory Plant Defensin. ACS Pharmacology and Translational Science, 2020, 3, 720-736.	4.9	18
7	Contributions of natural products to ion channel pharmacology. Natural Product Reports, 2020, 37, 703-716.	10.3	24
8	Antibodies and venom peptides: new modalities for ion channels. Nature Reviews Drug Discovery, 2019, 18, 339-357.	46.4	119
9	The combined activation of KCa3.1 and inhibition of Kv11.1/hERG1 currents contribute to overcome Cisplatin resistance in colorectal cancer cells. British Journal of Cancer, 2018, 118, 200-212.	6.4	58
10	Topical Delivery of Senicapoc Nanoliposomal Formulation for Ocular Surface Treatments. International Journal of Molecular Sciences, 2018, 19, 2977.	4.1	15
11	Peptide blockers of K v 1.3 channels in T cells as therapeutics for autoimmune disease. Current Opinion in Chemical Biology, 2017, 38, 97-107.	6.1	99
12	International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacological Reviews, 2017, 69, 1-11.	16.0	85
13	Tissue resident memory T cells in the human conjunctiva and immune signatures in human dry eye disease. Scientific Reports, 2017, 7, 45312.	3.3	35
14	A Non-invasive Way to Isolate and Phenotype Cells from the Conjunctiva. Journal of Visualized Experiments, 2017, , .	0.3	5
15	A Chronic Autoimmune Dry Eye Rat Model with Increase in Effector Memory T Cells in Eyeball Tissue. Journal of Visualized Experiments, 2017, , .	0.3	5
16	Venom-derived peptide inhibitors of voltage-gated potassium channels. Neuropharmacology, 2017, 127, 124-138.	4.1	65
17	Stomach contents of the Indian Pangolin <i>Manis crassicaudata</i> (Mammalia:) Tj ETQq1 1 10246.	0.784314 0.3	rgBT /Ove 11

18 Channelling potassium to fight cancer. Nature, 2016, 537, 497-499.

27.8 34

GEORGE K CHANDY

#	Article	IF	CITATIONS
19	Blockade of Kv1.3 channels ameliorates radiation-induced brain injury. Neuro-Oncology, 2014, 16, 528-539.	1.2	59
20	Kv1.3 channelâ€blocking immunomodulatory peptides from parasitic worms: implications for autoimmune diseases. FASEB Journal, 2014, 28, 3952-3964.	0.5	76
21	Selective Kv1.3 channel blocker as therapeutic for obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2239-48.	7.1	71
22	Kv1.3 Deletion Biases T Cells toward an Immunoregulatory Phenotype and Renders Mice Resistant to Autoimmune Encephalomyelitis. Journal of Immunology, 2012, 188, 5877-5886.	0.8	65
23	Durable Pharmacological Responses from the Peptide ShK-186, a Specific Kv1.3 Channel Inhibitor That Suppresses T Cell Mediators of Autoimmune Disease. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 642-653.	2.5	105
24	Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon, 2012, 59, 529-546.	1.6	203
25	Potassium Channel Modulation by a Toxin Domain in Matrix Metalloprotease 23. Journal of Biological Chemistry, 2010, 285, 9124-9136.	3.4	73
26	The functional network of ion channels in T lymphocytes. Immunological Reviews, 2009, 231, 59-87.	6.0	507
27	Kv1.3 potassium channels as a therapeutic target in multiple sclerosis. Expert Opinion on Therapeutic Targets, 2009, 13, 909-924.	3.4	79
28	Imaging of Effector Memory T Cells during a Delayed-Type Hypersensitivity Reaction and Suppression by Kv1.3 Channel Block. Immunity, 2008, 29, 602-614.	14.3	197
29	The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. Journal of Clinical Investigation, 2008, 118, 3025-3037.	8.2	193
30	Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17414-17419.	7.1	470
31	International Union of Pharmacology. LIII. Nomenclature and Molecular Relationships of Voltage-Gated Potassium Channels. Pharmacological Reviews, 2005, 57, 473-508.	16.0	785
32	Targeting Effector Memory T Cells with a Selective Peptide Inhibitor of Kv1.3 Channels for Therapy of Autoimmune Diseases. Molecular Pharmacology, 2005, 67, 1369-1381.	2.3	232
33	K+ Channel Expression during B Cell Differentiation: Implications for Immunomodulation and Autoimmunity. Journal of Immunology, 2004, 173, 776-786.	0.8	175
34	The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS. Journal of Clinical Investigation, 2003, 111, 1703-1713.	8.2	368
35	Mutating a Critical Lysine in ShK Toxin Alters Its Binding Configuration in the Poreâ^'Vestibule Region of the Voltage-Gated Potassium Channel, Kv1.3. Biochemistry, 2002, 41, 11963-11971.	2.5	64
36	Up-regulation of the IKCa1 Potassium Channel during T-cell Activation. Journal of Biological Chemistry, 2000, 275, 37137-37149.	3.4	357

GEORGE K CHANDY

#	Article	IF	CITATIONS
37	Calmodulin Mediates Calcium-dependent Activation of the Intermediate Conductance KCa Channel,IKCa1. Journal of Biological Chemistry, 1999, 274, 5746-5754.	3.4	277
38	Structural Conservation of the Pores of Calcium-activated and Voltage-gated Potassium Channels Determined by a Sea Anemone Toxin. Journal of Biological Chemistry, 1999, 274, 21885-21892.	3.4	119
39	ShK-Dap22, a Potent Kv1.3-specific Immunosuppressive Polypeptide. Journal of Biological Chemistry, 1998, 273, 32697-32707.	3.4	222
40	The Signature Sequence of Voltage-gated Potassium Channels Projects into the External Vestibule. Journal of Biological Chemistry, 1996, 271, 31013-31016.	3.4	119
41	Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins. Neuron, 1995, 15, 1169-1181.	8.1	272
42	Autoimmune diseases linked to abnormal K+ channel expression in double-negative CD4â^'CD8â^' T cells. European Journal of Immunology, 1990, 20, 747-751.	2.9	20
43	Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis?. Nature, 1984, 307, 465-468.	27.8	720
44	Mechanisms Underlying C-type Inactivation in Kv Channels: Lessons From Structures of Human Kv1.3 and Fly Shaker-IR Channels. Frontiers in Pharmacology, 0, 13, .	3.5	4