
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2661542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fine-tuning of a generative neural network for designing multi-target compounds. Journal of Computer-Aided Molecular Design, 2022, 36, 363-371.	1.3	8
2	Structure- and Similarity-Based Survey of Allosteric Kinase Inhibitors, Activators, and Closely Related Compounds. Journal of Medicinal Chemistry, 2022, 65, 922-934.	2.9	33
3	Systematic identification of activity cliffs with dualâ€atom replacements and their rationalization on the basis of singleâ€atom replacement analogs and Xâ€ray structures. Chemical Biology and Drug Design, 2022, 99, 308-319.	1.5	0
4	Approach for the Design of Covalent Protein Kinase Inhibitors via Focused Deep Generative Modeling. Molecules, 2022, 27, 570.	1.7	8
5	Al in Life Science Research – The Road Ahead. Artificial Intelligence in the Life Sciences, 2022, 2, 100030.	1.6	0
6	Deep Machine Learning for Computer-Aided Drug Design. Frontiers in Drug Discovery, 2022, 2, .	1.1	8
7	Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery. Journal of Computer-Aided Molecular Design, 2022, 36, 355-362.	1.3	44
8	Artificial intelligence in interdisciplinary life science and drug discovery research. Future Science OA, 2022, 8, FSO792.	0.9	8
9	Introducing a Chemically Intuitive Core-Substituent Fingerprint Designed to Explore Structural Requirements for Effective Similarity Searching and Machine Learning. Molecules, 2022, 27, 2331.	1.7	5
10	Differentiating Inhibitors of Closely Related Protein Kinases with Single- or Multi-Target Activity via Explainable Machine Learning and Feature Analysis. Biomolecules, 2022, 12, 557.	1.8	5
11	Understanding uncertainty in deep learning builds confidence. Artificial Intelligence in the Life Sciences, 2022, 2, 100033.	1.6	0
12	New Horizons in Drug Discovery - Understanding and Advancing Different Types of Kinase Inhibitors: Seven Years in Kinase Inhibitor Research with Impressive Achievements and New Future Prospects. Journal of Medicinal Chemistry, 2022, 65, 891-892.	2.9	9
13	Machine Learning in Chemoinformatics and Medicinal Chemistry. Annual Review of Biomedical Data Science, 2022, 5, 43-65.	2.8	8
14	From traditional to data-driven medicinal chemistry: A case study. Drug Discovery Today, 2022, 27, 2065-2070.	3.2	2
15	Publication Criteria and Requirements for Studies on Protein Kinase Inhibitors─What Is Expected?. Journal of Medicinal Chemistry, 2022, 65, 6973-6974.	2.9	10
16	DeepAS – Chemical language model for the extension of active analogue series. Bioorganic and Medicinal Chemistry, 2022, 66, 116808.	1.4	5
17	Deep learning of protein–ligand interactions—Remembering the actors. Artificial Intelligence in the Life Sciences, 2022, 2, 100037.	1.6	1
18	Computational method for the systematic alignment of analogue series with structure-activity relationship transfer potential across different targets. European Journal of Medicinal Chemistry, 2022, 239, 114558.	2.6	3

#	Article	IF	CITATIONS
19	Explainable machine learning for medicinal chemistry: exploring multi-target compounds. Future Medicinal Chemistry, 2022, 14, 1171-1173.	1.1	2
20	Prediction of Promiscuity Cliffs Using Machine Learning. Molecular Informatics, 2021, 40, 2000196.	1.4	6
21	Introducing the metacore concept for multi-target ligand design. RSC Medicinal Chemistry, 2021, 12, 628-635.	1.7	5
22	Predicting Isoform-Selective Carbonic Anhydrase Inhibitors via Machine Learning and Rationalizing Structural Features Important for Selectivity. ACS Omega, 2021, 6, 4080-4089.	1.6	8
23	Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions. Journal of Computer-Aided Molecular Design, 2021, 35, 285-295.	1.3	10
24	Prediction of activity cliffs on the basis of images using convolutional neural networks. Journal of Computer-Aided Molecular Design, 2021, 35, 1157-1164.	1.3	11
25	Systematic comparison of competitive and allosteric kinase inhibitors reveals common structural characteristics. European Journal of Medicinal Chemistry, 2021, 214, 113206.	2.6	6
26	Evolution of assay interference concepts in drug discovery. Expert Opinion on Drug Discovery, 2021, 16, 719-721.	2.5	13
27	Adapting the DeepSARM approach for dual-target ligand design. Journal of Computer-Aided Molecular Design, 2021, 35, 587-600.	1.3	5
28	Machine learning reveals that structural features distinguishing promiscuous and non-promiscuous compounds depend on target combinations. Scientific Reports, 2021, 11, 7863.	1.6	14
29	Data set of competitive and allosteric protein kinase inhibitors confirmed by X-ray crystallography. Data in Brief, 2021, 35, 106816.	0.5	4
30	Rationality over fashion and hype in drug design. F1000Research, 2021, 10, 397.	0.8	23
31	Structured data sets of compounds with multi-target and corresponding single-target activity from biological assays. Future Science OA, 2021, 7, FSO685.	0.9	2
32	Structural characteristics of compounds with multitarget activity. Future Drug Discovery, 2021, 3, .	0.8	6
33	Systematic assessment of structure-promiscuity relationships between different types of kinase inhibitors. Bioorganic and Medicinal Chemistry, 2021, 41, 116226.	1.4	3
34	Minimal screening requirements for identifying highly promiscuous kinase inhibitors. Future Medicinal Chemistry, 2021, 13, 1083-1085.	1.1	1
35	Feature importance correlation from machine learning indicates functional relationships between proteins and similar compound binding characteristics. Scientific Reports, 2021, 11, 14245.	1.6	18
36	State-of-the-art of artificial intelligence in medicinal chemistry. Future Science OA, 2021, 7, FSO702.	0.9	21

#	Article	IF	CITATIONS
37	Compound dataset and custom code for deep generative multi-target compound design. Future Science OA, 2021, 7, FSO715.	0.9	4
38	Development of curcumin-based amyloid β aggregation inhibitors for Alzheimer's disease using the SAR matrix approach. Bioorganic and Medicinal Chemistry, 2021, 46, 116357.	1.4	6
39	Chemistry-centric explanation of machine learning models. Artificial Intelligence in the Life Sciences, 2021, 1, 100009.	1.6	3
40	R-group replacement database for medicinal chemistry. Future Science OA, 2021, 7, FSO742.	0.9	5
41	Systematic mapping of R-group space enables the generation of an R-group replacement system for medicinal chemistry. European Journal of Medicinal Chemistry, 2021, 225, 113771.	2.6	6
42	Informatics for Chemistry, Biology, and Biomedical Sciences. Journal of Chemical Information and Modeling, 2021, 61, 26-35.	2.5	42
43	Comprehensive analysis of R-groups in medicinal chemistry. Future Medicinal Chemistry, 2021, , .	1.1	0
44	Searchable database of frequent R-groups in medicinal chemistry and their preferred replacements. Data in Brief, 2021, 39, 107456.	0.5	0
45	Data-Driven Analysis of Fluorination of Ligands of Aminergic G Protein Coupled Receptors. Biomolecules, 2021, 11, 1647.	1.8	2
46	Explainable machine learning predictions of dual-target compounds reveal characteristic structural features. Scientific Reports, 2021, 11, 21594.	1.6	11
47	Learning functional group chemistry from molecular images leads to accurate prediction of activity cliffs. Artificial Intelligence in the Life Sciences, 2021, 1, 100022.	1.6	2
48	Impact of Artificial Intelligence on Compound Discovery, Design, and Synthesis. ACS Omega, 2021, 6, 33293-33299.	1.6	16
49	Iterative DeepSARM modeling for compound optimization. Artificial Intelligence in the Life Sciences, 2021, 1, 100015.	1.6	1
50	Second-Generation Artificial Intelligence Approaches for Life Science Research. Artificial Intelligence in the Life Sciences, 2021, 1, 100026.	1.6	0
51	Explainable Machine Learning for Property Predictions in Compound Optimization. Journal of Medicinal Chemistry, 2021, 64, 17744-17752.	2.9	34
52	Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values. Journal of Medicinal Chemistry, 2020, 63, 8761-8777.	2.9	178
53	Machine Learning Models for Accurate Prediction of Kinase Inhibitors with Different Binding Modes. Journal of Medicinal Chemistry, 2020, 63, 8738-8748.	2.9	34
54	Introducing a new category of activity cliffs combining different compound similarity criteria. RSC Medicinal Chemistry, 2020, 11, 132-141.	1.7	10

#	Article	IF	CITATIONS
55	Promiscuity analysis of a kinase panel screen with designated p38 alpha inhibitors. European Journal of Medicinal Chemistry, 2020, 187, 112004.	2.6	3
56	Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome. Journal of Computer-Aided Molecular Design, 2020, 34, 1-10.	1.3	8
57	Exploring structure-promiscuity relationships using dual-site promiscuity cliffs and corresponding single-site analogs. Bioorganic and Medicinal Chemistry, 2020, 28, 115238.	1.4	2
58	Activity cliffs produced by single-atom modification of active compounds: Systematic identification and rationalization based on X-ray structures. European Journal of Medicinal Chemistry, 2020, 207, 112846.	2.6	5
59	Quantitative Comparison of Three-Dimensional Activity Landscapes of Compound Data Sets Based upon Topological Features. ACS Omega, 2020, 5, 24111-24117.	1.6	2
60	DeepCOMO: from structure-activity relationship diagnostics to generative molecular design using the compound optimization monitor methodology. Journal of Computer-Aided Molecular Design, 2020, 34, 1207-1218.	1.3	7
61	Data set of activity cliffs with single-atom modification and associated X-ray structure information for medicinal and computational chemistry applications. Data in Brief, 2020, 33, 106364.	0.5	Ο
62	Evidence for the presence of core structure-dependent activity cliffs. Future Medicinal Chemistry, 2020, 12, 1451-1455.	1.1	0
63	New Horizons in Drug Discovery - Understanding and Advancing Kinase Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 7921-7922.	2.9	4
64	N-Sulfonyl dipeptide nitriles as inhibitors of human cathepsin S: In silico design, synthesis and biochemical characterization. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127420.	1.0	4
65	Identifying representative kinases for inhibitor evaluation via systematic analysis of compound-based target relationships. European Journal of Medicinal Chemistry, 2020, 204, 112641.	2.6	4
66	From Qualitative to Quantitative Analysis of Activity and Property Landscapes. Journal of Chemical Information and Modeling, 2020, 60, 5873-5880.	2.5	11
67	Memory-assisted reinforcement learning for diverse molecular de novo design. Journal of Cheminformatics, 2020, 12, 68.	2.8	53
68	Global Assessment of Substituents on the Basis of Analogue Series. Journal of Medicinal Chemistry, 2020, 63, 15013-15020.	2.9	7
69	Activity landscape image analysis using convolutional neural networks. Journal of Cheminformatics, 2020, 12, 34.	2.8	11
70	Kinase inhibitor data set for systematic analysis of representative kinases across the human kinome. Data in Brief, 2020, 32, 106189.	0.5	5
71	Computational Method for Quantitative Comparison of Activity Landscapes on the Basis of Image Data. Molecules, 2020, 25, 3952.	1.7	1
72	Compounds with multitarget activity: structure-based analysis and machine learning. Future Drug Discovery, 2020, 2, .	0.8	7

#	Article	IF	CITATIONS
73	Prediction of an MMP-1 inhibitor activity cliff using the SAR matrix approach and its experimental validation. Scientific Reports, 2020, 10, 14710.	1.6	9
74	Analysis of Biological Screening Compounds with Single- or Multi-Target Activity via Diagnostic Machine Learning. Biomolecules, 2020, 10, 1605.	1.8	13
75	Systematic Data Analysis and Diagnostic Machine Learning Reveal Differences between Compounds with Single- and Multitarget Activity. Molecular Pharmaceutics, 2020, 17, 4652-4666.	2.3	14
76	Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions. Journal of Computer-Aided Molecular Design, 2020, 34, 1013-1026.	1.3	248
77	Increasing the public activity cliff knowledge base with new categories of activity cliffs. Future Science OA, 2020, 6, FSO472.	0.9	2
78	Advances in exploring activity cliffs. Journal of Computer-Aided Molecular Design, 2020, 34, 929-942.	1.3	18
79	Assessing the information content of structural and protein–ligand interaction representations for the classification of kinase inhibitor binding modes via machine learning and active learning. Journal of Cheminformatics, 2020, 12, 36.	2.8	14
80	Deep SAR matrix: SAR matrix expansion for advanced analog design using deep learning architectures. Future Drug Discovery, 2020, 2, .	0.8	11
81	Simplified activity cliff network representations with high interpretability and immediate access to SAR information. Journal of Computer-Aided Molecular Design, 2020, 34, 943-952.	1.3	1
82	Integrating computational lead optimization diagnostics with analog design and candidate selection. Future Science OA, 2020, 6, FSO451.	0.9	6
83	Mapping the S1 and S1' subsites of cysteine proteases with new dipeptidyl nitrile inhibitors as trypanocidal agents. PLoS Neglected Tropical Diseases, 2020, 14, e0007755.	1.3	11
84	Biological Activity Profiles of Multitarget Ligands from X-ray Structures. Molecules, 2020, 25, 794.	1.7	2
85	X-ray Structure-Based Chemoinformatic Analysis Identifies Promiscuous Ligands Binding to Proteins from Different Classes with Varying Shapes. International Journal of Molecular Sciences, 2020, 21, 3782.	1.8	7
86	Artificial Intelligence in Drug Discovery: Into the Great Wide Open. Journal of Medicinal Chemistry, 2020, 63, 8651-8652.	2.9	40
87	Computational Method for Structure-Based Analysis of SAR Transfer. Journal of Medicinal Chemistry, 2020, 63, 1388-1396.	2.9	4
88	Computational method for the identification of third generation activity cliffs. MethodsX, 2020, 7, 100793.	0.7	5
89	Systematic Exploration of Activity Cliffs Containing Privileged Substructures. Molecular Pharmaceutics, 2020, 17, 979-989.	2.3	5
90	Current Trends, Overlooked Issues, and Unmet Challenges in Virtual Screening. Journal of Chemical Information and Modeling, 2020, 60, 4112-4115.	2.5	34

#	Article	IF	CITATIONS
91	QSAR without borders. Chemical Society Reviews, 2020, 49, 3525-3564.	18.7	427
92	The SAR Matrix Method and an Artificially Intelligent Variant for the Identification and Structural Organization of Analog Series, SAR Analysis, and Compound Design. Molecular Informatics, 2020, 39, e2000045.	1.4	9
93	From SAR Diagnostics to Compound Design: Development Chronology of the Compound Optimization Monitor (COMO) Method. Molecular Informatics, 2020, 39, 2000046.	1.4	4
94	Inhibitor bias in luciferase-based luminescence assays. Future Science OA, 2020, 6, FSO594.	0.9	4
95	ccbmlib – a Python package for modeling Tanimoto similarity value distributions. F1000Research, 2020, 9, 100.	0.8	11
96	ccbmlib – a Python package for modeling Tanimoto similarity value distributions. F1000Research, 2020, 9, 100.	0.8	5
97	Combining structural and bioactivity-based fingerprints improves prediction performance and scaffoldÂhopping capability. Journal of Cheminformatics, 2019, 11, 54.	2.8	28
98	Data structures for compound promiscuity analysis: promiscuity cliffs, pathways and promiscuity hubs formed by inhibitors of the human kinome. Future Science OA, 2019, 5, FSO404.	0.9	3
99	Evaluation of different virtual screening strategies on the basis of compound sets with characteristic core distributions and dissimilarity relationships. Journal of Computer-Aided Molecular Design, 2019, 33, 729-743.	1.3	4
100	Forward-looking perspective on publishing in drug discovery. Future Drug Discovery, 2019, 1, FDD2.	0.8	2
101	Can Cysteine Protease Cross-Class Inhibitors Achieve Selectivity?. Journal of Medicinal Chemistry, 2019, 62, 10497-10525.	2.9	47
102	Introducing a new category of activity cliffs with chemical modifications at multiple sites and rationalizing contributions of individual substitutions. Bioorganic and Medicinal Chemistry, 2019, 27, 3605-3612.	1.4	12
103	Second-generation activity cliffs identified on the basis of target set-dependent potency difference criteria. Future Medicinal Chemistry, 2019, 11, 379-394.	1.1	12
104	Identification of Compounds That Interfere with Highâ€Throughput Screening Assay Technologies. ChemMedChem, 2019, 14, 1795-1802.	1.6	21
105	A general approach for retrosynthetic molecular core analysis. Journal of Cheminformatics, 2019, 11, 61.	2.8	8
106	Method for Systematic Analogue Search Using the Mega SAR Matrix Database. Journal of Chemical Information and Modeling, 2019, 59, 3727-3734.	2.5	5
107	Evolving Concept of Activity Cliffs. ACS Omega, 2019, 4, 14360-14368.	1.6	76
108	Large-Scale Comparison of Alternative Similarity Search Strategies with Varying Chemical Information Contents. ACS Omega, 2019, 4, 15304-15311.	1.6	7

#	Article	IF	CITATIONS
109	Computational chemical biology on the rise. Future Medicinal Chemistry, 2019, 11, 1-3.	1.1	5
110	Promiscuous Ligands from Experimentally Determined Structures, Binding Conformations, and Protein Family-Dependent Interaction Hotspots. ACS Omega, 2019, 4, 1729-1737.	1.6	18
111	Systematic identification of target set-dependent activity cliffs. Future Science OA, 2019, 5, FSO363.	0.9	7
112	The Future Is Now: Artificial Intelligence in Drug Discovery. Journal of Medicinal Chemistry, 2019, 62, 5249-5249.	2.9	3
113	Exploration of Target Synergy in Cancer Treatment by Cell-Based Screening Assay and Network Propagation Analysis. Journal of Chemical Information and Modeling, 2019, 59, 3072-3079.	2.5	1
114	Integrating the Structure–Activity Relationship Matrix Method with Molecular Grid Maps and Activity Landscape Models for Medicinal Chemistry Applications. ACS Omega, 2019, 4, 7061-7069.	1.6	19
115	Prediction of Different Classes of Promiscuous and Nonpromiscuous Compounds Using Machine Learning and Nearest Neighbor Analysis. ACS Omega, 2019, 4, 6883-6890.	1.6	18
116	Duality of activity cliffs in drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 517-520.	2.5	13
117	Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome. Journal of Computer-Aided Molecular Design, 2019, 33, 559-572.	1.3	8
118	Recent Progress in Structure-Based Evaluation of Compound Promiscuity. ACS Omega, 2019, 4, 2758-2765.	1.6	17
119	Multitask Machine Learning for Classifying Highly and Weakly Potent Kinase Inhibitors. ACS Omega, 2019, 4, 4367-4375.	1.6	49
120	Compound optimization monitor (COMO) method for computational evaluation of progress in medicinal chemistry projects. Future Drug Discovery, 2019, 1, FDD15.	0.8	5
121	Identifying Promiscuous Compounds with Activity against Different Target Classes. Molecules, 2019, 24, 4185.	1.7	17
122	Exploring Alternative Strategies for the Identification of Potent Compounds Using Support Vector Machine and Regression Modeling. Journal of Chemical Information and Modeling, 2019, 59, 983-992.	2.5	7
123	Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?. Journal of Chemical Information and Modeling, 2019, 59, 564-572.	2.5	20
124	Systematic Extraction of Analogue Series from Large Compound Collections Using a New Computational Compound–Core Relationship Method. ACS Omega, 2019, 4, 1027-1032.	1.6	56
125	Cathepsin B: Active site mapping with peptidic substrates and inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 1-15.	1.4	47
126	Three-Dimensional Activity Landscape Models of Different Design and Their Application to Compound Mapping and Potency Prediction. Journal of Chemical Information and Modeling, 2019, 59, 993-1004.	2.5	9

#	Article	IF	CITATIONS
127	Repositioning the Chemical Information Science Gateway. F1000Research, 2019, 8, 976.	0.8	2
128	[Special Issue for Honor Award dedicating to Prof Kimito Funatsu]Exploring Polypharmacology and Molecular Promiscuity. Journal of Computer Aided Chemistry, 2019, 20, 43-46.	0.3	0
129	Identification of 4â€arylâ€l <i>H</i> â€pyrrole[2,3â€b]pyridine derivatives for the development of new Bâ€Raf inhibitors. Chemical Biology and Drug Design, 2018, 92, 1382-1386.	1.5	3
130	Combining Similarity Searching and Network Analysis for the Identification of Active Compounds. ACS Omega, 2018, 3, 3768-3777.	1.6	10
131	Evaluation of Kinase Inhibitor Selectivity Using Cellâ€based Profiling Data. Molecular Informatics, 2018, 37, e1800024.	1.4	2
132	Exploring Selectivity of Multikinase Inhibitors across the Human Kinome. ACS Omega, 2018, 3, 1147-1153.	1.6	14
133	Computational method for estimating progression saturation of analog series. RSC Advances, 2018, 8, 5484-5492.	1.7	12
134	Design of a tripartite network for the prediction of drug targets. Journal of Computer-Aided Molecular Design, 2018, 32, 321-330.	1.3	8
135	Design of an Activity-Based Probe for Human Neutrophil Elastase: Implementation of the Lossen Rearrangement To Induce Förster Resonance Energy Transfers. Biochemistry, 2018, 57, 742-752.	1.2	28
136	Application of Generative Autoencoder in <i>De Novo</i> Molecular Design. Molecular Informatics, 2018, 37, 1700123.	1.4	276
137	X-ray Structures of Target–Ligand Complexes Containing Compounds with Assay Interference Potential. Journal of Medicinal Chemistry, 2018, 61, 1276-1284.	2.9	22
138	Series of screening compounds with high hit rates for the exploration of multi-target activities and assay interference. Future Science OA, 2018, 4, FSO279.	0.9	2
139	X-ray-Structure-Based Identification of Compounds with Activity against Targets from Different Families and Generation of Templates for Multitarget Ligand Design. ACS Omega, 2018, 3, 106-111.	1.6	19
140	Extracting Compound Profiling Matrices from Screening Data. ACS Omega, 2018, 3, 4706-4712.	1.6	10
141	Prediction of Compound Profiling Matrices Using Machine Learning. ACS Omega, 2018, 3, 4713-4723.	1.6	32
142	Reconciling Selectivity Trends from a Comprehensive Kinase Inhibitor Profiling Campaign with Known Activity Data. ACS Omega, 2018, 3, 3113-3119.	1.6	12
143	Redundancy in two major compound databases. Drug Discovery Today, 2018, 23, 1183-1186.	3.2	8
144	Rationalizing Promiscuity Cliffs. ChemMedChem, 2018, 13, 490-494.	1.6	14

#	Article	IF	CITATIONS
145	Machine Learning Distinguishes with High Accuracy between Pan-Assay Interference Compounds That Are Promiscuous or Represent Dark Chemical Matter. Journal of Medicinal Chemistry, 2018, 61, 10255-10264.	2.9	25
146	Computational Analysis of Kinase Inhibitors Identifies Promiscuity Cliffs across the Human Kinome. ACS Omega, 2018, 3, 17295-17308.	1.6	25
147	Computational Assessment of Chemical Saturation of Analogue Series under Varying Conditions. ACS Omega, 2018, 3, 15799-15808.	1.6	9
148	Computational Method to Evaluate Progress in Lead Optimization. Journal of Medicinal Chemistry, 2018, 61, 10895-10900.	2.9	18
149	Prediction of Compound Profiling Matrices, Part II: Relative Performance of Multitask Deep Learning and Random Forest Classification on the Basis of Varying Amounts of Training Data. ACS Omega, 2018, 3, 12033-12040.	1.6	20
150	Data-Driven Exploration of Selectivity and Off-Target Activities of Designated Chemical Probes. Molecules, 2018, 23, 2434.	1.7	9
151	SAR Matrix Method for Large-Scale Analysis of Compound Structure–Activity Relationships and Exploration of Multitarget Activity Spaces. Methods in Molecular Biology, 2018, 1825, 339-352.	0.4	2
152	Mapping Biological Activities to Different Types of Molecular Scaffolds: Exemplary Application to Protein Kinase Inhibitors. Methods in Molecular Biology, 2018, 1825, 327-337.	0.4	1
153	Collection of analog series-based scaffolds from public compound sources. Future Science OA, 2018, 4, FSO287.	0.9	8
154	Data analytics and deep learning in medicinal chemistry. Future Medicinal Chemistry, 2018, 10, 1541-1543.	1.1	5
155	Exploring ensembles of bioactive or virtual analogs of X-ray ligands for shape similarity searching. Journal of Computer-Aided Molecular Design, 2018, 32, 759-767.	1.3	2
156	Improving the utility of molecular scaffolds for medicinal and computational chemistry. Future Medicinal Chemistry, 2018, 10, 1645-1648.	1.1	13
157	Computationally derived compound profiling matrices. Future Science OA, 2018, 4, FSO327.	0.9	0
158	A Hybrid Virtual Screening Protocol Based on Binding Mode Similarity. Methods in Molecular Biology, 2018, 1824, 165-175.	0.4	3
159	Foundations of data-driven medicinal chemistry. Future Science OA, 2018, 4, FSO320.	0.9	10
160	Rationalizing the Formation of Activity Cliffs in Different Compound Data Sets. ACS Omega, 2018, 3, 7736-7744.	1.6	16
161	Computational design of new molecular scaffolds for medicinal chemistry, part II: generalization of analog series-based scaffolds. Future Science OA, 2018, 4, FSO267.	0.9	8
162	Identification and analysis of promiscuity cliffs formed by bioactive compounds and experimental implications. RSC Advances, 2017, 7, 58-66.	1.7	15

#	Article	IF	CITATIONS
163	Structure-Promiscuity Relationship Puzzles—Extensively Assayed Analogs with Large Differences in Target Annotations. AAPS Journal, 2017, 19, 856-864.	2.2	14
164	Influence of Varying Training Set Composition and Size on Support Vector Machine-Based Prediction of Active Compounds. Journal of Chemical Information and Modeling, 2017, 57, 710-716.	2.5	27
165	Systematic analysis of structural and activity relationships between conventional hierarchical and analog series-based scaffolds. RSC Advances, 2017, 7, 18718-18723.	1.7	3
166	How Frequently Are Pan-Assay Interference Compounds Active? Large-Scale Analysis of Screening Data Reveals Diverse Activity Profiles, Low Global Hit Frequency, and Many Consistently Inactive Compounds. Journal of Medicinal Chemistry, 2017, 60, 3879-3886.	2.9	97
167	Application of a New Scaffold Concept for Computational Target Deconvolution of Chemical Cancer Cell Line Screens. ACS Omega, 2017, 2, 1463-1468.	1.6	14
168	Privileged Structural Motif Detection and Analysis Using Generative Topographic Maps. Journal of Chemical Information and Modeling, 2017, 57, 1218-1232.	2.5	9
169	Compound Data Mining for Drug Discovery. Methods in Molecular Biology, 2017, 1526, 247-256.	0.4	9
170	Is scaffold hopping a reliable indicator for the ability of computational methods to identify structurally diverse active compounds?. Journal of Computer-Aided Molecular Design, 2017, 31, 603-608.	1.3	2
171	Computational scaffold hopping: cornerstone for the future of drug design?. Future Medicinal Chemistry, 2017, 9, 629-631.	1.1	25
172	Compound Ranking Based on Fuzzy Three-Dimensional Similarity Improves the Performance of Docking into Homology Models of G-Protein-Coupled Receptors. ACS Omega, 2017, 2, 2583-2592.	1.6	6
173	Identifying relationships between unrelated pharmaceutical target proteins on the basis of shared active compounds. Future Science OA, 2017, 3, FSO212.	0.9	4
174	A Fluorescent‣abeled Phosphono Bisbenzguanidine As an Activityâ€Based Probe for Matriptase. Chemistry - A European Journal, 2017, 23, 5205-5209.	1.7	12
175	Entering the â€ ⁻ big data' era in medicinal chemistry: molecular promiscuity analysis revisited. Future Science OA, 2017, 3, FSO179.	0.9	53
176	Molecular Similarity Concepts for Informatics Applications. Methods in Molecular Biology, 2017, 1526, 231-245.	0.4	28
177	Tracing compound pathways using chemical space networks. MedChemComm, 2017, 8, 376-384.	3.5	5
178	Mapping of inhibitors and activity data to the human kinome and exploring promiscuity from a ligand and target perspective. Chemical Biology and Drug Design, 2017, 89, 834-845.	1.5	16
179	Modeling Tanimoto Similarity Value Distributions and Predicting Search Results. Molecular Informatics, 2017, 36, 1600131.	1.4	15
180	Recent Advances in Scaffold Hopping. Journal of Medicinal Chemistry, 2017, 60, 1238-1246.	2.9	213

#	Article	IF	CITATIONS
181	Dark chemical matter in public screening assays and derivation of target hypotheses. MedChemComm, 2017, 8, 2100-2104.	3.5	6
182	Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction. ACS Omega, 2017, 2, 6371-6379.	1.6	75
183	From bird's eye views to molecular communities: two-layered visualization of structure–activity relationships in large compound data sets. Journal of Computer-Aided Molecular Design, 2017, 31, 961-977.	1.3	5
184	Promiscuity of inhibitors of human protein kinases at varying data confidence levels and test frequencies. RSC Advances, 2017, 7, 41265-41271.	1.7	20
185	Activity profiles of analog series containing pan assay interference compounds. RSC Advances, 2017, 7, 35638-35647.	1.7	24
186	From activity cliffs to promiscuity cliffs. Future Science OA, 2017, 3, FSO227.	0.9	3
187	Exploring Structural Relationships between Bioactive and Commercial Chemical Space and Developing Target Hypotheses for Compound Acquisition. ACS Omega, 2017, 2, 7760-7766.	1.6	2
188	Heat shock protein 90 and serine/threonine kinase B-Raf inhibitors have overlapping chemical space. RSC Advances, 2017, 7, 31069-31074.	1.7	17
189	Representation and identification of activity cliffs. Expert Opinion on Drug Discovery, 2017, 12, 879-883.	2.5	40
190	Characterization of P2X4 receptor agonists and antagonists by calcium influx and radioligand binding studies. Biochemical Pharmacology, 2017, 125, 41-54.	2.0	47
191	Charting Biologically Relevant Spirocyclic Compound Space. Chemistry - A European Journal, 2017, 23, 703-710.	1.7	107
192	Isonicotinohydrazones as inhibitors of alkaline phosphatase and ectoâ€5′â€nucleotidase. Chemical Biology and Drug Design, 2017, 89, 365-370.	1.5	25
193	Virtual Screening for Dual Hsp90/B-Raf Inhibitors. Methods in Pharmacology and Toxicology, 2017, , 355-365.	0.1	Ο
194	Assessing Scaffold Diversity of Kinase Inhibitors Using Alternative Scaffold Concepts and Estimating the Scaffold Hopping Potential for Different Kinases. Molecules, 2017, 22, 730.	1.7	12
195	Exploring differential evolution for inverse QSAR analysis. F1000Research, 2017, 6, 1285.	0.8	4
196	Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks. Journal of Computer-Aided Molecular Design, 2017, 31, 779-788.	1.3	8
197	Exploring differential evolution for inverse QSAR analysis. F1000Research, 2017, 6, 1285.	0.8	7
198	Towards a systematic assessment of assay interference: Identification of extensively tested compounds with high assay promiscuity. F1000Research, 2017, 6, 1505.	0.8	5

#	Article	IF	CITATIONS
199	Towards a systematic assessment of assay interference: Identification of extensively tested compounds with high assay promiscuity. F1000Research, 2017, 6, 1505.	0.8	4
200	Expanding the chemical information science gateway. F1000Research, 2017, 6, 1764.	0.8	1
201	Determining the Degree of Promiscuity of Extensively Assayed Compounds. PLoS ONE, 2016, 11, e0153873.	1.1	43
202	Extending accessible chemical space for the identification of novel leads. Expert Opinion on Drug Discovery, 2016, 11, 825-829.	2.5	11
203	Systematic Assessment of Molecular Selectivity at the Level of Targets, Bioactive Compounds, and Structural Analogues. ChemMedChem, 2016, 11, 1362-1370.	1.6	6
204	Advances in Activity Cliff Research. Molecular Informatics, 2016, 35, 181-191.	1.4	26
205	Analyzing Promiscuity at the Level of Active Compounds and Targets. Molecular Informatics, 2016, 35, 583-587.	1.4	8
206	Phosphono Bisbenzguanidines as Irreversible Dipeptidomimetic Inhibitors and Activityâ€Based Probes of Matriptaseâ€2. Chemistry - A European Journal, 2016, 22, 8525-8535.	1.7	20
207	Network Variants for Analyzing Target-Ligand Interactions. ACS Symposium Series, 2016, , 35-51.	0.5	1
208	Recent developments in SAR visualization. MedChemComm, 2016, 7, 1045-1055.	3.5	11
209	Chemical space visualization: transforming multidimensional chemical spaces into similarity-based molecular networks. Future Medicinal Chemistry, 2016, 8, 1769-1778.	1.1	14
210	Computational chemistry and computer-aided drug discovery: Part I. Future Medicinal Chemistry, 2016, 8, 1705-1706.	1.1	3
211	Computational chemistry and computer-aided drug discovery: Part II. Future Medicinal Chemistry, 2016, 8, 1799-1800.	1.1	3
212	Complexity and Heterogeneity of Data for Chemical Information Science. ACS Symposium Series, 2016, , 9-17.	0.5	0
213	Coumarin-thiazole and -oxadiazole derivatives: Synthesis, bioactivity and docking studies for aldose/aldehyde reductase inhibitors. Bioorganic Chemistry, 2016, 68, 177-186.	2.0	46
214	Computational Method for the Systematic Identification of Analog Series and Key Compounds Representing Series and Their Biological Activity Profiles. Journal of Medicinal Chemistry, 2016, 59, 7667-7676.	2.9	50
215	Prediction of Activity Cliffs Using Condensed Graphs of Reaction Representations, Descriptor Recombination, Support Vector Machine Classification, and Support Vector Regression. Journal of Chemical Information and Modeling, 2016, 56, 1631-1640.	2.5	28
216	Exploring Molecular Promiscuity from a Ligand and Target Perspective. ACS Symposium Series, 2016, , 19-34.	0.5	1

#	Article	IF	CITATIONS
217	Predicting bioactive conformations and binding modes of macrocycles. Journal of Computer-Aided Molecular Design, 2016, 30, 841-849.	1.3	13
218	Evaluation of bisbenzamidines as inhibitors for matriptase-2. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3741-3745.	1.0	7
219	Hierarchical Analysis of Bioactive Matched Molecular Pairs, Encoded Chemical Transformations, and Associated Substructures. Molecular Informatics, 2016, 35, 483-488.	1.4	5
220	Maximum common substructure-based Tversky index: an asymmetric hybrid similarity measure. Journal of Computer-Aided Molecular Design, 2016, 30, 523-531.	1.3	13
221	Analog series-based scaffolds: computational design and exploration of a new type of molecular scaffolds for medicinal chemistry. Future Science OA, 2016, 2, FSO149.	0.9	28
222	Highly Promiscuous Small Molecules from Biological Screening Assays Include Many Pan-Assay Interference Compounds but Also Candidates for Polypharmacology. Journal of Medicinal Chemistry, 2016, 59, 10285-10290.	2.9	38
223	Limiting the Number of Potential Binding Modes by Introducing Symmetry into Ligands: Structureâ€Based Design of Inhibitors for Trypsinâ€Like Serine Proteases. Chemistry - A European Journal, 2016, 22, 610-625.	1.7	11
224	Binding mode similarity measures for ranking of docking poses: a case study on the adenosine A2A receptor. Journal of Computer-Aided Molecular Design, 2016, 30, 447-456.	1.3	12
225	En Route to New Therapeutic Options for Iron Overload Diseases: Matriptaseâ€2 as a Target for Kunitzâ€īype Inhibitors. ChemBioChem, 2016, 17, 595-604.	1.3	19
226	Classification of matching molecular series on the basis of SAR phenotypes and structural relationships. MedChemComm, 2016, 7, 237-246.	3.5	8
227	One-pot synthesis of tetrazole-1,2,5,6-tetrahydronicotinonitriles and cholinesterase inhibition: Probing the plausible reaction mechanism via computational studies. Bioorganic Chemistry, 2016, 65, 38-47.	2.0	14
228	Assessing the Growth of Bioactive Compounds and Scaffolds over Time: Implications for Lead Discovery and Scaffold Hopping. Journal of Chemical Information and Modeling, 2016, 56, 300-307.	2.5	16
229	Computational Exploration of Molecular Scaffolds in Medicinal Chemistry. Journal of Medicinal Chemistry, 2016, 59, 4062-4076.	2.9	100
230	Systematic design of analogs of active compounds covering more than 1000 targets. MedChemComm, 2016, 7, 859-863.	3.5	2
231	Three-Dimensional Similarity in Molecular Docking: Prioritizing Ligand Poses on the Basis of Experimental Binding Modes. Journal of Chemical Information and Modeling, 2016, 56, 580-587.	2.5	38
232	Lessons learned from the design of chemical space networks and opportunities for new applications. Journal of Computer-Aided Molecular Design, 2016, 30, 191-208.	1.3	25
233	Design of chemical space networks on the basis of Tversky similarity. Journal of Computer-Aided Molecular Design, 2016, 30, 1-12.	1.3	17
234	Systematic assessment of analog relationships between bioactive compounds and promiscuity of analog sets. MedChemComm, 2016, 7, 230-236.	3.5	4

#	Article	IF	CITATIONS
235	Monitoring the Progression of Structure–Activity Relationship Information during Lead Optimization. Journal of Medicinal Chemistry, 2016, 59, 4235-4244.	2.9	27
236	Design of chemical space networks incorporating compound distance relationships. F1000Research, 2016, 5, 2634.	0.8	2
237	Activity-relevant similarity values for fingerprints and implications for similarity searching. F1000Research, 2016, 5, 591.	0.8	41
238	Activity-relevant similarity values for fingerprints and implications for similarity searching. F1000Research, 2016, 5, 591.	0.8	37
239	Analyzing compound activity records and promiscuity degrees in light of publication statistics. F1000Research, 2016, 5, 1227.	0.8	7
240	Analyzing compound activity records and promiscuity degrees in light of publication statistics. F1000Research, 2016, 5, 1227.	0.8	4
241	Design of chemical space networks incorporating compound distance relationships. F1000Research, 2016, 5, 2634.	0.8	1
242	Active Site Mapping of Human Cathepsinâ€F with Dipeptide Nitrile Inhibitors. ChemMedChem, 2015, 10, 1365-1377.	1.6	3
243	Identification of Interaction Hot Spots in Structures of Drug Targets on the Basis of Threeâ€Đimensional Activity Cliff Information. Chemical Biology and Drug Design, 2015, 86, 1458-1465.	1.5	8
244	Method for Systematic Assessment of Chemical Changes in Molecular Scaffolds with Conserved Topology and Application to the Analysis of Scaffoldâ€Activity Relationships. Molecular Informatics, 2015, 34, 531-549.	1.4	1
245	Determination of Metaâ€Parameters for Support Vector Machine Linear Combinations. Molecular Informatics, 2015, 34, 127-133.	1.4	1
246	Identification of Orthologous Target Pairs with SharedÂActive Compounds and Comparison of Organismâ€specific Activity Patterns. Chemical Biology and Drug Design, 2015, 86, 1105-1114.	1.5	2
247	Structural and Modeling Studies on ecto-5'-nucleotidase Aiding in Inhibitor Design. Mini-Reviews in Medicinal Chemistry, 2015, 15, 34-40.	1.1	6
248	Berberine Reduces Neurotoxicity Related to Nonalcoholic Steatohepatitis in Rats. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-13.	0.5	20
249	Computer-aided drug discovery. F1000Research, 2015, 4, 630.	0.8	49
250	Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy. Bioorganic and Medicinal Chemistry, 2015, 23, 3183-3191.	1.4	4
251	Visualization and Interpretation of Support Vector Machine Activity Predictions. Journal of Chemical Information and Modeling, 2015, 55, 1136-1147.	2.5	37
252	Pushing the boundaries of computational approaches: special focus issue on computational chemistry and computer-aided drug discovery. Future Medicinal Chemistry, 2015, 7, 2415-2417.	1.1	6

#	Article	IF	CITATIONS
253	Computational Polypharmacology Analysis of the Heat Shock Protein 90 Interactome. Journal of Chemical Information and Modeling, 2015, 55, 676-686.	2.5	31
254	Introducing the â€~active search' method for iterative virtual screening. Journal of Computer-Aided Molecular Design, 2015, 29, 305-314.	1.3	12
255	Hit Expansion from Screening Data Based upon Conditional Probabilities of Activity Derived from SAR Matrices. Molecular Informatics, 2015, 34, 134-146.	1.4	4
256	Activity cliff clusters as a source of structure–activity relationship information. Expert Opinion on Drug Discovery, 2015, 10, 441-447.	2.5	12
257	Structural diversity and potency range distribution of scaffolds from compounds active against current pharmaceutical targets. Future Medicinal Chemistry, 2015, 7, 111-122.	1.1	3
258	Structural and Activity Profile Relationships Between Drug Scaffolds. AAPS Journal, 2015, 17, 609-619.	2.2	6
259	Extension of three-dimensional activity cliff information through systematic mapping of active analogs. RSC Advances, 2015, 5, 43006-43015.	1.7	9
260	Synthesis, biological evaluation and molecular docking of N-phenyl thiosemicarbazones as urease inhibitors. Bioorganic Chemistry, 2015, 61, 51-57.	2.0	65
261	Syntheses, Cholinesterases Inhibition, and Molecular Docking Studies of Pyrido[2,3â€ <i>b</i>]pyrazine Derivatives. Chemical Biology and Drug Design, 2015, 86, 1115-1120.	1.5	11
262	Monitoring global growth of activity cliff information over time and assessing activity cliff frequencies and distributions. Future Medicinal Chemistry, 2015, 7, 1565-1579.	1.1	12
263	Comparison of bioactive chemical space networks generated using substructure- and fingerprint-based measures of molecular similarity. Journal of Computer-Aided Molecular Design, 2015, 29, 595-608.	1.3	19
264	Visualization of multi-property landscapes for compound selection and optimization. Journal of Computer-Aided Molecular Design, 2015, 29, 695-705.	1.3	2
265	Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures. Journal of Computer-Aided Molecular Design, 2015, 29, 937-950.	1.3	38
266	Design, characterization and cellular uptake studies of fluorescence-labeled prototypic cathepsin inhibitors. Organic and Biomolecular Chemistry, 2015, 13, 10310-10323.	1.5	18
267	Identification and analysis of the currently available high-confidence three-dimensional activity cliffs. RSC Advances, 2015, 5, 43660-43668.	1.7	11
268	Design and characterization of chemical space networks for different compound data sets. Journal of Computer-Aided Molecular Design, 2015, 29, 113-125.	1.3	30
269	Systematic assessment of coordinated activity cliffs formed by kinase inhibitors and detailed characterization of activity cliff clusters and associated SAR information. European Journal of Medicinal Chemistry, 2015, 90, 414-427.	2.6	9
270	Advancing the Kinase Field: New Targets and Second Generation Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 1-1.	2.9	9

#	Article	lF	CITATIONS
271	Exploring the Scaffold Universe of Kinase Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 315-332.	2.9	21
272	Comprehensive Analysis of Three-Dimensional Activity Cliffs Formed by Kinase Inhibitors with Different Binding Modes and Cliff Mapping of Structural Analogues. Journal of Medicinal Chemistry, 2015, 58, 252-264.	2.9	21
273	Current Compound Coverage of the Kinome. Journal of Medicinal Chemistry, 2015, 58, 30-40.	2.9	56
274	Entering new publication territory in chemoinformatics and chemical information science. F1000Research, 2015, 4, 35.	0.8	5
275	Follow-up: Prospective compound design using the â€~SAR Matrix' method and matrix-derived conditional probabilities of activity. F1000Research, 2015, 4, 75.	0.8	7
276	Promiscuity progression of bioactive compounds over time. F1000Research, 2015, 4, 118.	0.8	8
277	AnalogExplorer2 – Stereochemistry sensitive graphical analysis of large analog series. F1000Research, 2015, 4, 1031.	0.8	3
278	On the evolving open peer review culture for chemical information science. F1000Research, 2015, 4, 1350.	0.8	3
279	Systematic Artifacts in Support Vector Regression-Based Compound Potency Prediction Revealed by Statistical and Activity Landscape Analysis. PLoS ONE, 2015, 10, e0119301.	1.1	26
280	Quantifying the Tendency of Therapeutic Target Proteins to Bind Promiscuous or Selective Compounds. PLoS ONE, 2015, 10, e0126838.	1.1	15
281	Evolution of the activity cliff concept for structure–activity relationship analysis and drug discovery. Future Medicinal Chemistry, 2014, 6, 1545-1549.	1.1	11
282	Design of an activity landscape view taking compound-based feature probabilities into account. Journal of Computer-Aided Molecular Design, 2014, 28, 919-926.	1.3	1
283	Systematic Identification of Matching Molecular Series and Mapping of Screening Hits. Molecular Informatics, 2014, 33, 257-263.	1.4	7
284	Influence of Search Parameters and Criteria on Compound Selection, Promiscuity, and Pan Assay Interference Characteristics. Journal of Chemical Information and Modeling, 2014, 54, 3056-3066.	2.5	32
285	Compound Structureâ€Independent Activity Prediction in Highâ€Dimensional Target Space. Molecular Informatics, 2014, 33, 544-558.	1.4	0
286	Recent Progress in Understanding Activity Cliffs and Their Utility in Medicinal Chemistry. Journal of Medicinal Chemistry, 2014, 57, 18-28.	2.9	174
287	New Frontiers in Kinases: Second Generation Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 2167-2168.	2.9	24
288	Many drugs contain unique scaffolds with varying structural relationships to scaffolds of currently available bioactive compounds. European Journal of Medicinal Chemistry, 2014, 76, 427-434.	2.6	12

#	Article	IF	CITATIONS
289	Formation of Activity Cliffs Is Accompanied by Systematic Increases in Ligand Efficiency from Lowly to Highly Potent Compounds. AAPS Journal, 2014, 16, 335-341.	2.2	5
290	Novel structural hybrids of pyrazolobenzothiazines with benzimidazoles as cholinesterase inhibitors. European Journal of Medicinal Chemistry, 2014, 78, 106-117.	2.6	34
291	Molecular Similarity in Medicinal Chemistry. Journal of Medicinal Chemistry, 2014, 57, 3186-3204.	2.9	448
292	Learning from â€~big data': compounds and targets. Drug Discovery Today, 2014, 19, 357-360.	3.2	45
293	Exploring Activity Cliffs from a Chemoinformatics Perspective. Molecular Informatics, 2014, 33, 438-442.	1.4	14
294	Large-Scale Assessment of Activity Landscape Feature Probabilities of Bioactive Compounds. Journal of Chemical Information and Modeling, 2014, 54, 442-450.	2.5	2
295	AnalogExplorer: A New Method for Graphical Analysis of Analog Series and Associated Structure–Activity Relationship Information. Journal of Medicinal Chemistry, 2014, 57, 9184-9194.	2.9	10
296	Matched molecular pairs derived by retrosynthetic fragmentation. MedChemComm, 2014, 5, 64-67.	3.5	50
297	Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: Synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis. Bioorganic and Medicinal Chemistry, 2014, 22, 6163-6173.	1.4	54
298	Extraction of SAR information from activity cliff clusters via matching molecular series. European Journal of Medicinal Chemistry, 2014, 87, 454-460.	2.6	12
299	Prediction of Compound Potency Changes in Matched Molecular Pairs Using Support Vector Regression. Journal of Chemical Information and Modeling, 2014, 54, 2654-2663.	2.5	18
300	A Coumarinâ€Labeled Vinyl Sulfone as Tripeptidomimetic Activityâ€Based Probe for Cysteine Cathepsins. ChemBioChem, 2014, 15, 955-959.	1.3	45
301	Method for the Evaluation of Structure–Activity Relationship Information Associated with Coordinated Activity Cliffs. Journal of Medicinal Chemistry, 2014, 57, 6553-6563.	2.9	17
302	Introduction of a Methodology for Visualization and Graphical Interpretation of Bayesian Classification Models. Journal of Chemical Information and Modeling, 2014, 54, 2451-2468.	2.5	13
303	Activity Cliff Networks for Medicinal Chemistry. Drug Development Research, 2014, 75, 291-298.	1.4	6
304	EXPLORING COMPOUND PROMISCUITY PATTERNS AND MULTI-TARGET ACTIVITY SPACES. Computational and Structural Biotechnology Journal, 2014, 9, e201401003.	1.9	54
305	Benzothiazolyl substituted iminothiazolidinones and benzamido-oxothiazolidines as potent and partly selective aldose reductase inhibitors. MedChemComm, 2014, 5, 1371-1380.	3.5	18
306	Composition and Topology of Activity Cliff Clusters Formed by Bioactive Compounds. Journal of Chemical Information and Modeling, 2014, 54, 451-461.	2.5	40

#	Article	IF	CITATIONS
307	Chemical space networks: a powerful new paradigm for the description of chemical space. Journal of Computer-Aided Molecular Design, 2014, 28, 795-802.	1.3	59
308	Polypharmacology: Challenges and Opportunities in Drug Discovery. Journal of Medicinal Chemistry, 2014, 57, 7874-7887.	2.9	813
309	Neighborhood-Based Prediction of Novel Active Compounds from SAR Matrices. Journal of Chemical Information and Modeling, 2014, 54, 801-809.	2.5	20
310	Substrate specificity of human matriptase-2. Biochimie, 2014, 97, 121-127.	1.3	23
311	Many Approved Drugs Have Bioactive Analogs With Different Target Annotations. AAPS Journal, 2014, 16, 847-859.	2.2	13
312	Support vector machines for drug discovery. Expert Opinion on Drug Discovery, 2014, 9, 93-104.	2.5	113
313	Improving data mining strategies for drug design. Future Medicinal Chemistry, 2014, 6, 255-257.	1.1	8
314	Modeling of Compound Profiling Experiments Using Support Vector Machines. Chemical Biology and Drug Design, 2014, 84, 75-85.	1.5	6
315	Matched molecular pair-based data sets for computer-aided medicinal chemistry. F1000Research, 2014, 3, 36.	0.8	5
316	Matched molecular pair-based data sets for computer-aided medicinal chemistry. F1000Research, 2014, 3, 36.	0.8	5
317	Compound data sets and software tools for chemoinformatics and medicinal chemistry applications: update and data transfer. F1000Research, 2014, 3, 69.	0.8	4
318	Advancing the activity cliff concept, part II. F1000Research, 2014, 3, 75.	0.8	23
319	The †SAR Matrix' method and its extensions for applications in medicinal chemistry and chemogenomics. F1000Research, 2014, 3, 113.	0.8	22
320	Monitoring drug promiscuity over time. F1000Research, 2014, 3, 218.	0.8	17
321	Monitoring drug promiscuity over time. F1000Research, 2014, 3, 218.	0.8	18
322	Activity artifacts in drug discovery and different facets of compound promiscuity. F1000Research, 2014, 3, 233.	0.8	13
323	On data sharing in computational drug discovery and the need for data notes. F1000Research, 2014, 3, 280.	0.8	1
324	Promiscuity profiles of bioactive compounds: potency range and difference distributions and the relation to target numbers and families. MedChemComm, 2013, 4, 1196.	3.5	13

#	Article	lF	CITATIONS
325	Conditional Probabilities of Activity Landscape Features for Individual Compounds. Journal of Chemical Information and Modeling, 2013, 53, 1602-1612.	2.5	10
326	Similarity Searching for Potent Compounds Using Feature Selection. Journal of Chemical Information and Modeling, 2013, 53, 1613-1619.	2.5	10
327	Compound promiscuity: what can we learn from current data?. Drug Discovery Today, 2013, 18, 644-650.	3.2	135
328	Quantifying the Fingerprint Descriptor Dependence of Structure–Activity Relationship Information on a Large Scale. Journal of Chemical Information and Modeling, 2013, 53, 2275-2281.	2.5	12
329	What is the Likelihood of an Active Compound to Be Promiscuous? Systematic Assessment of Compound Promiscuity on the Basis of PubChem Confirmatory Bioassay Data. AAPS Journal, 2013, 15, 808-815.	2.2	36
330	Identification of sulfonic acids as efficient ecto-5′-nucleotidase inhibitors. European Journal of Medicinal Chemistry, 2013, 70, 685-691.	2.6	33
331	Prediction of Individual Compounds Forming Activity Cliffs Using Emerging Chemical Patterns. Journal of Chemical Information and Modeling, 2013, 53, 3131-3139.	2.5	13
332	Activity cliffs in PubChem confirmatory bioassays taking inactive compounds into account. Journal of Computer-Aided Molecular Design, 2013, 27, 115-124.	1.3	11
333	How Promiscuous Are Pharmaceutically Relevant Compounds? A Data-Driven Assessment. AAPS Journal, 2013, 15, 104-111.	2.2	32
334	The Future of Virtual Compound Screening. Chemical Biology and Drug Design, 2013, 81, 33-40.	1.5	74
335	Activity profile relationships between structurally similar promiscuous compounds. European Journal of Medicinal Chemistry, 2013, 69, 393-398.	2.6	10
336	Evaluation of molecular model-based discovery of ecto-5′-nucleotidase inhibitors on the basis of X-ray structures. Bioorganic and Medicinal Chemistry, 2013, 21, 6616-6622.	1.4	8
337	Molecular crime scene investigation – dusting for fingerprints. Drug Discovery Today: Technologies, 2013, 10, e491-e498.	4.0	2
338	Introduction of Target Cliffs as a Concept To Identify and Describe Complex Molecular Selectivity Patterns. Journal of Chemical Information and Modeling, 2013, 53, 545-552.	2.5	8
339	Activity Landscapes, Information Theory, and Structure – Activity Relationships. Molecular Informatics, 2013, 32, 421-430.	1.4	23
340	Compound Pathway Model To Capture SAR Progression: Comparison of Activity Cliff-Dependent and -Independent Pathways. Journal of Chemical Information and Modeling, 2013, 53, 1067-1072.	2.5	7
341	Do Medicinal Chemists Learn from Activity Cliffs? A Systematic Evaluation of Cliff Progression in Evolving Compound Data Sets. Journal of Medicinal Chemistry, 2013, 56, 3339-3345.	2.9	23
342	Compound Optimization through Data Set-Dependent Chemical Transformations. Journal of Chemical Information and Modeling, 2013, 53, 1263-1271.	2.5	3

#	Article	IF	CITATIONS
343	Classification of Compounds with Distinct or Overlapping Multi-Target Activities and Diverse Molecular Mechanisms Using Emerging Chemical Patterns. Journal of Chemical Information and Modeling, 2013, 53, 1272-1281.	2.5	20
344	Large-scale SAR analysis. Drug Discovery Today: Technologies, 2013, 10, e419-e426.	4.0	9
345	Prediction of Compounds with Closely Related Activity Profiles Using Weighted Support Vector Machine Linear Combinations. Journal of Chemical Information and Modeling, 2013, 53, 791-801.	2.5	23
346	Comparison of Confirmed Inactive and Randomly Selected Compounds as Negative Training Examples in Support Vector Machine-Based Virtual Screening. Journal of Chemical Information and Modeling, 2013, 53, 1595-1601.	2.5	39
347	Systematic Identification of Scaffolds Representing Compounds Active against Individual Targets and Single or Multiple Target Families. Journal of Chemical Information and Modeling, 2013, 53, 312-326.	2.5	23
348	Predicting Potent Compounds via Model-Based Global Optimization. Journal of Chemical Information and Modeling, 2013, 53, 553-559.	2.5	24
349	SAR Transfer across Different Targets. Journal of Chemical Information and Modeling, 2013, 53, 1589-1594.	2.5	10
350	Searching for Closely Related Ligands with Different Mechanisms of Action Using Machine Learning and Mapping Algorithms. Journal of Chemical Information and Modeling, 2013, 53, 2252-2274.	2.5	2
351	Systematic mining of analog series with related core structures in multi-target activity space. Journal of Computer-Aided Molecular Design, 2013, 27, 665-674.	1.3	11
352	Visualization of Activity Landscapes and Chemogenomics Data. Molecular Informatics, 2013, 32, 954-963.	1.4	2
353	A Perspective on Computational Chemogenomics. Molecular Informatics, 2013, 32, 1025-1028.	1.4	18
354	Advancing the activity cliff concept. F1000Research, 2013, 2, 199.	0.8	65
355	High-resolution view of compound promiscuity. F1000Research, 2013, 2, 144.	0.8	39
356	High-resolution view of compound promiscuity. F1000Research, 2013, 2, 144.	0.8	34
357	Modeling of activity landscapes for drug discovery. Expert Opinion on Drug Discovery, 2012, 7, 463-473.	2.5	43
358	Systematic Assessment of Compound Series with SAR Transfer Potential. Journal of Chemical Information and Modeling, 2012, 52, 3138-3143.	2.5	24
359	Assessing the Target Differentiation Potential of Imidazole-Based Protein Kinase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 11067-11071.	2.9	24
360	Chemoinformatics: Recent advances at the interfaces between computer and chemical information sciences, chemistry, and drug discovery. Bioorganic and Medicinal Chemistry, 2012, 20, 5316.	1.4	4

#	Article	IF	CITATIONS
361	Advances in Computational Medicinal Chemistry: Matched Molecular Pair Analysis. Drug Development Research, 2012, 73, 518-527.	1.4	21
362	Many structurally related drugs bind different targets whereas distinct drugs display significant target overlap. RSC Advances, 2012, 2, 3481.	1.7	14
363	Mechanism-based bipartite matching molecular series graphs to identify structural modifications of receptor ligands that lead to mechanism hopping. MedChemComm, 2012, 3, 441.	3.5	9
364	Graph Mining for SAR Transfer Series. Journal of Chemical Information and Modeling, 2012, 52, 935-942.	2.5	13
365	Directed R-Group Combination Graph: A Methodology To Uncover Structure–Activity Relationship Patterns in a Series of Analogues. Journal of Medicinal Chemistry, 2012, 55, 1215-1226.	2.9	15
366	Identification of Multitarget Activity Ridges in High-Dimensional Bioactivity Spaces. Journal of Chemical Information and Modeling, 2012, 52, 2579-2586.	2.5	8
367	Design of a Three-Dimensional Multitarget Activity Landscape. Journal of Chemical Information and Modeling, 2012, 52, 2876-2883.	2.5	6
368	Systematic Identification and Classification of Three-Dimensional Activity Cliffs. Journal of Chemical Information and Modeling, 2012, 52, 1490-1498.	2.5	26
369	Extending the Activity Cliff Concept: Structural Categorization of Activity Cliffs and Systematic Identification of Different Types of Cliffs in the ChEMBL Database. Journal of Chemical Information and Modeling, 2012, 52, 1806-1811.	2.5	54
370	Searching for Coordinated Activity Cliffs Using Particle Swarm Optimization. Journal of Chemical Information and Modeling, 2012, 52, 927-934.	2.5	17
371	Multiobjective Particle Swarm Optimization: Automated Identification of Structure–Activity Relationship-Informative Compounds with Favorable Physicochemical Property Distributions. Journal of Chemical Information and Modeling, 2012, 52, 2848-2855.	2.5	8
372	MMP-Cliffs: Systematic Identification of Activity Cliffs on the Basis of Matched Molecular Pairs. Journal of Chemical Information and Modeling, 2012, 52, 1138-1145.	2.5	181
373	Navigating High-Dimensional Activity Landscapes: Design and Application of the Ligand-Target Differentiation Map. Journal of Chemical Information and Modeling, 2012, 52, 1962-1969.	2.5	13
374	Frequency of Occurrence and Potency Range Distribution of Activity Cliffs in Bioactive Compounds. Journal of Chemical Information and Modeling, 2012, 52, 2348-2353.	2.5	27
375	Exploring Activity Cliffs in Medicinal Chemistry. Journal of Medicinal Chemistry, 2012, 55, 2932-2942.	2.9	282
376	Exploration of 3D Activity Cliffs on the Basis of Compound Binding Modes and Comparison of 2D and 3D Cliffs. Journal of Chemical Information and Modeling, 2012, 52, 670-677.	2.5	23
377	Prediction of Activity Cliffs Using Support Vector Machines. Journal of Chemical Information and Modeling, 2012, 52, 2354-2365.	2.5	50
378	Growth of Ligand–Target Interaction Data in ChEMBL Is Associated with Increasing and Activity Measurement-Dependent Compound Promiscuity. Journal of Chemical Information and Modeling, 2012, 52, 2550-2558.	2.5	37

#	Article	IF	CITATIONS
379	Potency-directed similarity searching using support vector machines. Journal of Cheminformatics, 2012, 4, .	2.8	2
380	Chemoinformatics: A view of the field and current trends in method development. Bioorganic and Medicinal Chemistry, 2012, 20, 5317-5323.	1.4	44
381	Methods for SAR visualization. RSC Advances, 2012, 2, 369-378.	1.7	45
382	Fingerprint design and engineering strategies: rationalizing and improving similarity search performance. Future Medicinal Chemistry, 2012, 4, 1945-1959.	1.1	17
383	Virtual compound screening in drug discovery. Future Medicinal Chemistry, 2012, 4, 593-602.	1.1	44
384	Matched Molecular Pair Analysis of Small Molecule Microarray Data Identifies Promiscuity Cliffs and Reveals Molecular Origins of Extreme Compound Promiscuity. Journal of Medicinal Chemistry, 2012, 55, 10220-10228.	2.9	41
385	Rationalizing Structure and Target Relationships between Current Drugs. AAPS Journal, 2012, 14, 764-771.	2.2	3
386	Progress in Computational Medicinal Chemistry. Journal of Medicinal Chemistry, 2012, 55, 3593-3594.	2.9	6
387	Virtual Screening Identifies Novel Sulfonamide Inhibitors of <i>ecto</i> -5′-Nucleotidase. Journal of Medicinal Chemistry, 2012, 55, 6576-6581.	2.9	47
388	Systematic assessment of scaffold distances in ChEMBL: prioritization of compound data sets for scaffold hopping analysis in virtual screening. Journal of Computer-Aided Molecular Design, 2012, 26, 1101-1109.	1.3	4
389	Introducing the LASSO Graph for Compound Data Set Representation and Structure–Activity Relationship Analysis. Journal of Medicinal Chemistry, 2012, 55, 5546-5553.	2.9	17
390	Analysis of structure-based virtual screening studies and characterization of identified active compounds. Future Medicinal Chemistry, 2012, 4, 603-613.	1.1	42
391	SAR Matrices: Automated Extraction of Information-Rich SAR Tables from Large Compound Data Sets. Journal of Chemical Information and Modeling, 2012, 52, 1769-1776.	2.5	49
392	Exploring SAR Continuity in the Vicinity of Activity Cliffs. Chemical Biology and Drug Design, 2012, 79, 22-29.	1.5	10
393	Computational Chemical Biology: Identification of Small Molecular Probes that Discriminate between Members of Target Protein Families. Chemical Biology and Drug Design, 2012, 79, 369-375.	1.5	3
394	Design of multi-target activity landscapes that capture hierarchical activity cliff distributions. Journal of Cheminformatics, 2012, 4, .	2.8	1
395	Computational chemistry in pharmaceutical research: at the crossroads. Journal of Computer-Aided Molecular Design, 2012, 26, 11-12.	1.3	7
396	Freely available compound data sets and software tools for chemoinformatics and computational medicinal chemistry applications. F1000Research, 2012, 1, 11.	0.8	3

#	Article	IF	CITATIONS
397	Extraction of Discontinuous Structure–Activity Relationships from Compound Data Sets through Particle Swarm Optimization. Journal of Chemical Information and Modeling, 2011, 51, 1545-1551.	2.5	4
398	Large-scale exploration of bioisosteric replacements on the basis of matched molecular pairs. Future Medicinal Chemistry, 2011, 3, 425-436.	1.1	43
399	Extracting SAR Information from a Large Collection of Anti-Malarial Screening Hits by NSG-SPT Analysis. ACS Medicinal Chemistry Letters, 2011, 2, 201-206.	1.3	19
400	Rationalizing the Role of SAR Tolerance for Ligand-Based Virtual Screening. Journal of Chemical Information and Modeling, 2011, 51, 837-842.	2.5	5
401	Local Structural Changes, Global Data Views: Graphical Substructureâ~'Activity Relationship Trailing. Journal of Medicinal Chemistry, 2011, 54, 2944-2951.	2.9	77
402	Design of Multitarget Activity Landscapes That Capture Hierarchical Activity Cliff Distributions. Journal of Chemical Information and Modeling, 2011, 51, 258-266.	2.5	48
403	Combining Horizontal and Vertical Substructure Relationships in Scaffold Hierarchies for Activity Prediction. Journal of Chemical Information and Modeling, 2011, 51, 248-257.	2.5	13
404	A Data Mining Method To Facilitate SAR Transfer. Journal of Chemical Information and Modeling, 2011, 51, 1857-1866.	2.5	25
405	Comparison of two- and three-dimensional activity landscape representations for different compound data sets. MedChemComm, 2011, 2, 113-118.	3.5	14
406	A Homogeneous Fluorescence Resonance Energy Transfer System for Monitoring the Activation of a Protein Switch in Real Time. Journal of the American Chemical Society, 2011, 133, 8372-8379.	6.6	28
407	Molecular Mechanism-Based Network-like Similarity Graphs Reveal Relationships between Different Types of Receptor Ligands and Structural Changes that Determine Agonistic, Inverse-Agonistic, and Antagonistic Effects. Journal of Chemical Information and Modeling, 2011, 51, 1281-1286.	2.5	17
408	Chemical Transformations That Yield Compounds with Distinct Activity Profiles. ACS Medicinal Chemistry Letters, 2011, 2, 523-527.	1.3	18
409	Computational Medicinal Chemistry. Journal of Medicinal Chemistry, 2011, 54, 1-2.	2.9	13
410	Large-Scale Similarity Search Profiling of ChEMBL Compound Data Sets. Journal of Chemical Information and Modeling, 2011, 51, 1831-1839.	2.5	76
411	Assessing the Confidence Level of Public Domain Compound Activity Data and the Impact of Alternative Potency Measurements on SAR Analysis. Journal of Chemical Information and Modeling, 2011, 51, 3131-3137.	2.5	16
412	Development of a Method To Consistently Quantify the Structural Distance between Scaffolds and To Assess Scaffold Hopping Potential. Journal of Chemical Information and Modeling, 2011, 51, 2507-2514.	2.5	25
413	How Do 2D Fingerprints Detect Structurally Diverse Active Compounds? Revealing Compound Subset-Specific Fingerprint Features through Systematic Selection. Journal of Chemical Information and Modeling, 2011, 51, 2254-2265.	2.5	30
414	Introduction of the Conditional Correlated Bernoulli Model of Similarity Value Distributions and its Application to the Prospective Prediction of Fingerprint Search Performance. Journal of Chemical Information and Modeling, 2011, 51, 2496-2506.	2.5	20

#	Article	IF	CITATIONS
415	REPROVIS-DB: A Benchmark System for Ligand-Based Virtual Screening Derived from Reproducible Prospective Applications. Journal of Chemical Information and Modeling, 2011, 51, 2467-2473.	2.5	21
416	SAR Monitoring of Evolving Compound Data Sets Using Activity Landscapes. Journal of Chemical Information and Modeling, 2011, 51, 532-540.	2.5	20
417	Target Family-Directed Exploration of Scaffolds with Different SAR Profiles. Journal of Chemical Information and Modeling, 2011, 51, 3138-3148.	2.5	9
418	From Activity Cliffs to Activity Ridges: Informative Data Structures for SAR Analysis. Journal of Chemical Information and Modeling, 2011, 51, 1848-1856.	2.5	47
419	Identification of target family directed bioisosteric replacements. MedChemComm, 2011, 2, 601-606.	3.5	17
420	Potencyâ€Directed Similarity Searching Using Support Vector Machines. Chemical Biology and Drug Design, 2011, 77, 30-38.	1.5	8
421	Comprehensive Analysis of Single―and Multiâ€Target Activity Cliffs Formed by Currently Available Bioactive Compounds. Chemical Biology and Drug Design, 2011, 78, 224-228.	1.5	30
422	Representation of Multiâ€Target Activity Landscapes Through Target Pairâ€Based Compound Encoding in Selfâ€Organizing Maps. Chemical Biology and Drug Design, 2011, 78, 778-786.	1.5	12
423	State-of-the-art in ligand-based virtual screening. Drug Discovery Today, 2011, 16, 372-376.	3.2	196
424	Lessons Learned from Molecular Scaffold Analysis. Journal of Chemical Information and Modeling, 2011, 51, 1742-1753.	2.5	82
425	Computational Analysis of Activity and Selectivity Cliffs. Methods in Molecular Biology, 2011, 672, 119-132.	0.4	6
426	Molecular Test Systems for Computational Selectivity Studies and Systematic Analysis of Compound Selectivity Profiles. Methods in Molecular Biology, 2011, 672, 503-515.	0.4	5
427	Application of Support Vector Machine-Based Ranking Strategies to Search for Target-Selective Compounds. Methods in Molecular Biology, 2011, 672, 517-530.	0.4	11
428	Similarity searching. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 260-282.	6.2	117
429	Activity Profile Sequences: a Concept to Account for the Progression of Compound Activity in Target Space and to Extract SAR Information from Analogue Series with Multiple Target Annotations. ChemMedChem, 2011, 6, 2150-2154.	1.6	4
430	Lipid-like sulfoxides and amine oxides as inhibitors of mast cell activation. European Journal of Medicinal Chemistry, 2011, 46, 2147-2151.	2.6	4
431	BindingDB and ChEMBL: online compound databases for drug discovery. Expert Opinion on Drug Discovery, 2011, 6, 683-687.	2.5	60
432	Mapping of pharmacological space. Expert Opinion on Drug Discovery, 2011, 6, 1-7.	2.5	14

#	Article	IF	CITATIONS
433	Advanced Fingerprint Methods for Similarity Searching: Balancing Molecular Complexity Effects. Combinatorial Chemistry and High Throughput Screening, 2010, 13, 220-228.	0.6	12
434	Predicting the Performance of Fingerprint Similarity Searching. Methods in Molecular Biology, 2010, 672, 159-173.	0.4	7
435	Quo Vadis, Virtual Screening? A Comprehensive Survey of Prospective Applications. Journal of Medicinal Chemistry, 2010, 53, 8461-8467.	2.9	223
436	Exploring Target-Selectivity Patterns of Molecular Scaffolds. ACS Medicinal Chemistry Letters, 2010, 1, 54-58.	1.3	14
437	Data structures and computational tools for the extraction of SAR information from large compound sets. Drug Discovery Today, 2010, 15, 630-639.	3.2	64
438	Scaffold Distributions in Bioactive Molecules, Clinical Trials Compounds, and Drugs. ChemMedChem, 2010, 5, 187-190.	1.6	22
439	Inhibitors of Cathepsins K and S Identified Using the DynaMAD Virtual Screening Algorithm. ChemMedChem, 2010, 5, 61-64.	1.6	3
440	Computational Analysis of Multiâ€ŧarget Structure–Activity Relationships to Derive Preference Orders for Chemical Modifications toward Target Selectivity. ChemMedChem, 2010, 5, 847-858.	1.6	26
441	Rendering Conventional Molecular Fingerprints for Virtual Screening Independent of Molecular Complexity and Size Effects. ChemMedChem, 2010, 5, 859-868.	1.6	10
442	Structural and Potency Relationships between Scaffolds of Compounds Active against Human Targets. ChemMedChem, 2010, 5, 1681-1685.	1.6	12
443	Iterative Shannon Entropy – a Methodology to Quantify the Information Content of Value Range Dependent Data Distributions. Application to Descriptor and Compound Selectivity Profiling. Molecular Informatics, 2010, 29, 432-440.	1.4	1
444	Computational screening for membrane-directed inhibitors of mast cell activation. European Journal of Medicinal Chemistry, 2010, 45, 2700-2704.	2.6	8
445	Adaptation of formal concept analysis for the systematic exploration of structure-activity and structure-selectivity relationships. Journal of Cheminformatics, 2010, 2, .	2.8	3
446	Reduction and Recombination of Fingerprints of Different Design Increase Compound Recall and the Structural Diversity of Hits. Chemical Biology and Drug Design, 2010, 75, 152-160.	1.5	23
447	Computational Methodologies for Compound Database Searching that Utilize Experimental Protein–Ligand Interaction Information. Chemical Biology and Drug Design, 2010, 76, 191-200.	1.5	24
448	Application of Information—Theoretic Concepts in Chemoinformatics. Information (Switzerland), 2010, 1, 60-73.	1.7	14
449	Rationalizing Three-Dimensional Activity Landscapes and the Influence of Molecular Representations on Landscape Topology and the Formation of Activity Cliffs. Journal of Chemical Information and Modeling, 2010, 50, 1021-1033.	2.5	80
450	Rationalization of the Performance and Target Dependence of Similarity Searching Incorporating Proteinâ^'Ligand Interaction Information. Journal of Chemical Information and Modeling, 2010, 50, 1042-1052.	2.5	4

#	Article	IF	CITATIONS
451	Chemical Substitutions That Introduce Activity Cliffs Across Different Compound Classes and Biological Targets. Journal of Chemical Information and Modeling, 2010, 50, 1248-1256.	2.5	57
452	Identification of the First Low-Molecular-Weight Inhibitors of Matriptase-2. Journal of Medicinal Chemistry, 2010, 53, 5523-5535.	2.9	67
453	Molecular Scaffolds with High Propensity to Form Multi-Target Activity Cliffs. Journal of Chemical Information and Modeling, 2010, 50, 500-510.	2.5	45
454	Targeting Multifunctional Proteins by Virtual Screening: Structurally Diverse Cytohesin Inhibitors with Differentiated Biological Functions. ACS Chemical Biology, 2010, 5, 839-849.	1.6	34
455	Scaffold Hopping Using Two-Dimensional Fingerprints: True Potential, Black Magic, or a Hopeless Endeavor? Guidelines for Virtual Screening. Journal of Medicinal Chemistry, 2010, 53, 5707-5715.	2.9	84
456	Polypharmacology Directed Compound Data Mining: Identification of Promiscuous Chemotypes with Different Activity Profiles and Comparison to Approved Drugs. Journal of Chemical Information and Modeling, 2010, 50, 2112-2118.	2.5	56
457	Atom-Centered Interacting Fragments and Similarity Search Applications. Journal of Chemical Information and Modeling, 2010, 50, 79-86.	2.5	18
458	Similarityâ^'Potency Trees: A Method to Search for SAR Information in Compound Data Sets and Derive SAR Rules. Journal of Chemical Information and Modeling, 2010, 50, 1395-1409.	2.5	56
459	Activity Landscape Representations for Structureâ^ Activity Relationship Analysis. Journal of Medicinal Chemistry, 2010, 53, 8209-8223.	2.9	163
460	Systematic Analysis of Public Domain Compound Potency Data Identifies Selective Molecular Scaffolds across Druggable Target Families. Journal of Medicinal Chemistry, 2010, 53, 752-758.	2.9	43
461	Current Trends in Ligand-Based Virtual Screening: Molecular Representations, Data Mining Methods, New Application Areas, and Performance Evaluation. Journal of Chemical Information and Modeling, 2010, 50, 205-216.	2.5	306
462	Design and Evaluation of Bonded Atom Pair Descriptors. Journal of Chemical Information and Modeling, 2010, 50, 487-499.	2.5	14
463	Development of Potent and Selective Inhibitors of <i>ecto</i> -5′-Nucleotidase Based on an Anthraquinone Scaffold. Journal of Medicinal Chemistry, 2010, 53, 2076-2086.	2.9	88
464	SARANEA: A Freely Available Program To Mine Structureâ^'Activity and Structureâ^'Selectivity Relationship Information in Compound Data Sets. Journal of Chemical Information and Modeling, 2010, 50, 68-78.	2.5	77
465	Advances in 2D fingerprint similarity searching. Expert Opinion on Drug Discovery, 2010, 5, 529-542.	2.5	14
466	Global assessment of scaffold hopping potential for current pharmaceutical targets. MedChemComm, 2010, 1, 339-344.	3.5	25
467	Relevance of Feature Combinations for Similarity Searching Using General or Activity Class-Directed Molecular Fingerprints. Journal of Chemical Information and Modeling, 2009, 49, 561-570.	2.5	15
468	Systematic computational analysis of structure–activity relationships: concepts, challenges and recent advances. Future Medicinal Chemistry, 2009, 1, 451-466.	1.1	44

#	Article	IF	CITATIONS
469	Extraction of Structure-Activity Relationship Information from High-Throughput Screening Data. Current Medicinal Chemistry, 2009, 16, 4049-4057.	1.2	13
470	Navigating structure–activity landscapes. Drug Discovery Today, 2009, 14, 698-705.	3.2	161
471	Hit Expansion through Computational Selectivity Searching. ChemMedChem, 2009, 4, 52-54.	1.6	7
472	Improving the Search Performance of Extended Connectivity Fingerprints through Activityâ€Oriented Feature Filtering and Application of a Bitâ€Densityâ€Dependent Similarity Function. ChemMedChem, 2009, 4, 540-548.	1.6	40
473	Fragment Formal Concept Analysis Accurately Classifies Compounds with Closely Related Biological Activities. ChemMedChem, 2009, 4, 1174-1181.	1.6	3
474	Inhibition of Human Leukocyte Elastase by Brunsvicamidesâ€A–C: Cyanobacterial Cyclic Peptides. ChemMedChem, 2009, 4, 1425-1429.	1.6	31
475	Systematic Extraction of Structure–Activity Relationship Information from Biological Screening Data. ChemMedChem, 2009, 4, 1431-1438.	1.6	14
476	Molecular Fingerprint Recombination: Generating Hybrid Fingerprints for Similarity Searching from Different Fingerprint Types. ChemMedChem, 2009, 4, 1859-1863.	1.6	37
477	From Structure–Activity to Structure–Selectivity Relationships: Quantitative Assessment, Selectivity Cliffs, and Key Compounds. ChemMedChem, 2009, 4, 1864-1873.	1.6	51
478	Inside Cover: From Structure-Activity to Structure-Selectivity Relationships: Quantitative Assessment, Selectivity Cliffs, and Key Compounds (ChemMedChem 11/2009). ChemMedChem, 2009, 4, 1766-1766.	1.6	0
479	Predicting the similarity search performance of fingerprints and their combination with molecular property descriptors using probabilistic and information theoretic modeling. Statistical Analysis and Data Mining, 2009, 2, 123-134.	1.4	5
480	Analysis of structure-selectivity relationships through single- or dual step selectivity searching using 2D molecular fingerprints. Chemistry Central Journal, 2009, 3, .	2.6	0
481	Complexity effects in fingerprint similarity searching. Chemistry Central Journal, 2009, 3, .	2.6	0
482	Combining Cluster Analysis, Feature Selection and Multiple Support Vector Machine Models for the Identification of Human Etherâ€aâ€goâ€go Related Gene Channel Blocking Compounds. Chemical Biology and Drug Design, 2009, 73, 17-25.	1.5	26
483	Methods for Computerâ€Aided Chemical Biology. Part 4: Selectivity Searching for Ion Channel Ligands and Mapping of Molecular Fragments as Selectivity Markers. Chemical Biology and Drug Design, 2009, 73, 273-282.	1.5	11
484	Utilizing Target–Ligand Interaction Information in Fingerprint Searching for Ligands of Related Targets. Chemical Biology and Drug Design, 2009, 74, 25-32.	1.5	16
485	Filtering and Counting of Extended Connectivity Fingerprint Features Maximizes Compound Recall and the Structural Diversity of Hits. Chemical Biology and Drug Design, 2009, 74, 92-98.	1.5	10
486	Methods for Computerâ€Aided Chemical Biology. Part 5: Rationalizing the Selectivity of Cathepsin Inhibitors on the Basis of Molecular Fragments and Topological Feature Distributions. Chemical Biology and Drug Design, 2009, 74, 129-141.	1.5	3

#	Article	IF	CITATIONS
487	Threeâ€Dimensional Protein–Ligand Interaction Scaling of Twoâ€Dimensional Fingerprints. Chemical Biology and Drug Design, 2009, 74, 449-456.	1.5	15
488	Ligand Prediction from Protein Sequence and Small Molecule Information Using Support Vector Machines and Fingerprint Descriptors. Journal of Chemical Information and Modeling, 2009, 49, 767-779.	2.5	50
489	Development of a Compound Class-Directed Similarity Coefficient That Accounts for Molecular Complexity Effects in Fingerprint Searching. Journal of Chemical Information and Modeling, 2009, 49, 1369-1376.	2.5	15
490	Exploration of Structureâ^'Activity Relationship Determinants in Analogue Series. Journal of Medicinal Chemistry, 2009, 52, 3212-3224.	2.9	28
491	Structural Interpretation of Activity Cliffs Revealed by Systematic Analysis of Structureâ Activity Relationships in Analog Series. Journal of Chemical Information and Modeling, 2009, 49, 2179-2189.	2.5	36
492	Molecular Formal Concept Analysis for Compound Selectivity Profiling in Biologically Annotated Databases. Journal of Chemical Information and Modeling, 2009, 49, 1359-1368.	2.5	12
493	Ligand Prediction for Orphan Targets Using Support Vector Machines and Various Target-Ligand Kernels Is Dominated by Nearest Neighbor Effects. Journal of Chemical Information and Modeling, 2009, 49, 2155-2167.	2.5	63
494	Shannon Entropy-Based Fingerprint Similarity Search Strategy. Journal of Chemical Information and Modeling, 2009, 49, 1687-1691.	2.5	15
495	Searching for Target-Selective Compounds Using Different Combinations of Multiclass Support Vector Machine Ranking Methods, Kernel Functions, and Fingerprint Descriptors. Journal of Chemical Information and Modeling, 2009, 49, 582-592.	2.5	56
496	Elucidation of Structureâ^'Activity Relationship Pathways in Biological Screening Data. Journal of Medicinal Chemistry, 2009, 52, 1075-1080.	2.9	25
497	Development of a Fingerprint Reduction Approach for Bayesian Similarity Searching Based on Kullbackâ `Leibler Divergence Analysis. Journal of Chemical Information and Modeling, 2009, 49, 1347-1358.	2.5	29
498	Bayesian Screening for Active Compounds in Highâ€dimensional Chemical Spaces Combining Property Descriptors and Molecular Fingerprints. Chemical Biology and Drug Design, 2008, 71, 8-14.	1.5	26
499	Exploring structure–selectivity relationships of biogenic amine GPCR antagonists using similarity searching and dynamic compound mapping. Molecular Diversity, 2008, 12, 25-40.	2.1	17
500	Distribution of randomly generated activity class characteristic substructures in diverse active and database compounds. Molecular Diversity, 2008, 12, 77-83.	2.1	4
501	Similarity Searching using Compound Classâ€Specific Combinations of Substructures Found in Randomly Generated Molecular Fragment Populations. ChemMedChem, 2008, 3, 67-73.	1.6	17
502	Integrating Structure―and Ligandâ€Based Virtual Screening: Comparison of Individual, Parallel, and Fused Molecular Docking and Similarity Search Calculations on Multiple Targets. ChemMedChem, 2008, 3, 1566-1571.	1.6	62
503	Computational analysis of ligand relationships within target families. Current Opinion in Chemical Biology, 2008, 12, 352-358.	2.8	79
504	Random Reduction in Fingerprint Bit Density Improves Compound Recall in Search Calculations Using Complex Reference Molecules. Chemical Biology and Drug Design, 2008, 71, 511-517.	1.5	12

#	Article	IF	CITATIONS
505	Methods for Computerâ€Aided Chemical Biology. Part 3: Analysis of Structure–Selectivity Relationships through Single―or Dualâ€6tep Selectivity Searching and Bayesian Classification. Chemical Biology and Drug Design, 2008, 71, 518-528.	1.5	34
506	RelACCSâ€FP: A Structural Minimalist Approach to Fingerprint Design. Chemical Biology and Drug Design, 2008, 72, 341-349.	1.5	13
507	Support-Vector-Machine-Based Ranking Significantly Improves the Effectiveness of Similarity Searching Using 2D Fingerprints and Multiple Reference Compounds. Journal of Chemical Information and Modeling, 2008, 48, 742-746.	2.5	61
508	Balancing the Influence of Molecular Complexity on Fingerprint Similarity Searching. Journal of Chemical Information and Modeling, 2008, 48, 75-84.	2.5	31
509	Molecular Similarity Concepts and Search Calculations. Methods in Molecular Biology, 2008, 453, 327-347.	0.4	18
510	Similarity Searching Using Fingerprints of Molecular Fragments Involved in Proteinâ^'Ligand Interactions. Journal of Chemical Information and Modeling, 2008, 48, 2308-2312.	2.5	37
511	Computational approaches in chemogenomics and chemical biology: current and future impact on drug discovery. Expert Opinion on Drug Discovery, 2008, 3, 1371-1376.	2.5	23
512	Formal Concept Analysis for the Identification of Molecular Fragment Combinations Specific for Active and Highly Potent Compounds. Journal of Medicinal Chemistry, 2008, 51, 5342-5348.	2.9	31
513	Ligand-Target Interaction-Based Weighting of Substructures for Virtual Screening. Journal of Chemical Information and Modeling, 2008, 48, 1955-1964.	2.5	33
514	Design and Exploration of Target-Selective Chemical Space Representations. Journal of Chemical Information and Modeling, 2008, 48, 1389-1395.	2.5	8
515	Bit Silencing in Fingerprints Enables the Derivation of Compound Class-Directed Similarity Metrics. Journal of Chemical Information and Modeling, 2008, 48, 1754-1759.	2.5	27
516	Bayesian Similarity Searching in High-Dimensional Descriptor Spaces Combined with Kullback-Leibler Descriptor Divergence Analysis. Journal of Chemical Information and Modeling, 2008, 48, 247-255.	2.5	19
517	Structureâ^'Activity Relationship Anatomy by Network-like Similarity Graphs and Local Structureâ^'Activity Relationship Indices. Journal of Medicinal Chemistry, 2008, 51, 6075-6084.	2.9	143
518	Random Molecular Fragment Methods in Computational Medicinal Chemistry. Current Medicinal Chemistry, 2008, 15, 2108-2121.	1.2	8
519	Chemical Database Mining through Entropy-Based Molecular Similarity Assessment of Randomly Generated Structural Fragment Populations. Journal of Chemical Information and Modeling, 2007, 47, 59-68.	2.5	30
520	Exploring Peptide-likeness of Active Molecules Using 2D Fingerprint Methods. Journal of Chemical Information and Modeling, 2007, 47, 1366-1378.	2.5	7
521	Mining of Randomly Generated Molecular Fragment Populations Uncovers Activity-Specific Fragment Hierarchies. Journal of Chemical Information and Modeling, 2007, 47, 1405-1413.	2.5	20
522	Introduction of an Information-Theoretic Method to Predict Recovery Rates of Active Compounds for Bayesian in Silico Screening:  Theory and Screening Trials. Journal of Chemical Information and Modeling, 2007, 47, 337-341.	2.5	26

#	Article	IF	CITATIONS
523	SAR Index:  Quantifying the Nature of Structureâ^'Activity Relationships. Journal of Medicinal Chemistry, 2007, 50, 5571-5578.	2.9	172
524	Analysis of a High-Throughput Screening Data Set Using Potency-Scaled Molecular Similarity Algorithms. Journal of Chemical Information and Modeling, 2007, 47, 367-375.	2.5	5
525	Bayesian Interpretation of a Distance Function for Navigating High-Dimensional Descriptor Spaces. Journal of Chemical Information and Modeling, 2007, 47, 39-46.	2.5	27
526	Analysis of Chemical Information Content Using Shannon Entropy. Reviews in Computational Chemistry, 2007, , 263-289.	1.5	14
527	Comparison of 2D Fingerprint Methods for Multiple-Template Similarity Searching on Compound Activity Classes of Increasing Structural Diversity. ChemMedChem, 2007, 2, 208-217.	1.6	46
528	Apparent Asymmetry in Fingerprint Similarity Searching is a Direct Consequence of Differences in Bit Densities and Molecular Size. ChemMedChem, 2007, 2, 1037-1042.	1.6	26
529	Introduction of a Generally Applicable Method to Estimate Retrieval of Active Molecules for Similarity Searching using Fingerprints. ChemMedChem, 2007, 2, 1311-1320.	1.6	24
530	Molecular Similarity Analysis Uncovers Heterogeneous Structure-Activity Relationships and Variable Activity Landscapes. Chemistry and Biology, 2007, 14, 489-497.	6.2	59
531	Methods for Computerâ€aided Chemical Biology. Part 1: Design of a Benchmark System for the Evaluation of Compound Selectivity. Chemical Biology and Drug Design, 2007, 70, 182-194.	1.5	29
532	Methods for Computerâ€aided Chemical Biology. Part 2: Evaluation of Compound Selectivity Using 2D Molecular Fingerprints. Chemical Biology and Drug Design, 2007, 70, 195-205.	1.5	37
533	Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discovery Today, 2007, 12, 225-233.	3.2	409
534	A Novel Descriptor Histogram Filtering Method for Database Mining and the Identification of Active Molecules. Letters in Drug Design and Discovery, 2007, 4, 286-292.	0.4	3
535	Mapping Algorithms for Molecular Similarity Analysis and Ligand-Based Virtual Screening:Â Design of DynaMAD and Comparison with MAD and DMC. Journal of Chemical Information and Modeling, 2006, 46, 1623-1634.	2.5	30
536	Design and Evaluation of a Novel Class-Directed 2D Fingerprint to Search for Structurally Diverse Active Compounds. Journal of Chemical Information and Modeling, 2006, 46, 2515-2526.	2.5	38
537	Emerging Chemical Patterns:  A New Methodology for Molecular Classification and Compound Selection. Journal of Chemical Information and Modeling, 2006, 46, 2502-2514.	2.5	44
538	Determination and Mapping of Activity-Specific Descriptor Value Ranges for the Identification of Active Compounds. Journal of Medicinal Chemistry, 2006, 49, 2284-2293.	2.9	23
539	A Distance Function for Retrieval of Active Molecules from Complex Chemical Space Representations. Journal of Chemical Information and Modeling, 2006, 46, 1094-1097.	2.5	25
540	Assessment of Molecular Similarity from the Analysis of Randomly Generated Structural Fragment Populations. Journal of Chemical Information and Modeling, 2006, 46, 1937-1944.	2.5	34

#	Article	IF	CITATIONS
541	Towards Unified Compound Screening Strategies: A Critical Evaluation of Error Sources in Experimental and Virtual High-Throughput Screening. QSAR and Combinatorial Science, 2006, 25, 1153-1161.	1.5	23
542	Measure, mine, model, and manipulate: the future for HTS and chemoinformatics?. Drug Discovery Today, 2006, 11, 863-865.	3.2	14
543	Potency-Scaled Partitioning in Descriptor Spaces with Increasing Dimensionality. Current Topics in Medicinal Chemistry, 2005, 5, 797-803.	1.0	0
544	New Methodologies for Ligand-Based Virtual Screening. Current Pharmaceutical Design, 2005, 11, 1189-1202.	0.9	139
545	Evaluating the High-Throughput Screening Computations. Journal of Biomolecular Screening, 2005, 10, 649-652.	2.6	27
546	Anatomy of Fingerprint Search Calculations on Structurally Diverse Sets of Active Compounds. Journal of Chemical Information and Modeling, 2005, 45, 1812-1819.	2.5	33
547	Virtual Screening Methods that Complement HTS. Combinatorial Chemistry and High Throughput Screening, 2004, 7, 259-269.	0.6	113
548	Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 2004, 3, 935-949.	21.5	2,697
549	Understanding chemoinformatics: a unifying approach. Drug Discovery Today, 2004, 9, 13-14.	3.2	13
550	Molecular Similarity Analysis and Virtual Screening by Mapping of Consensus Positions in Binary-Transformed Chemical Descriptor Spaces with Variable Dimensionality. Journal of Chemical Information and Computer Sciences, 2004, 44, 21-29.	2.8	41
551	Similarity Search Profiling Reveals Effects of Fingerprint Scaling in Virtual Screening. Journal of Chemical Information and Computer Sciences, 2004, 44, 2032-2039.	2.8	30
552	Identification of Structurally Diverse Growth Hormone Secretagogue Agonists by Virtual Screening and Structureâ^'Activity Relationship Analysis of 2-Formylaminoacetamide Derivatives. Journal of Medicinal Chemistry, 2004, 47, 4286-4290.	2.9	32
553	POT-DMC:Â A Virtual Screening Method for the Identification of Potent Hits. Journal of Medicinal Chemistry, 2004, 47, 5608-5611.	2.9	26
554	Mini-fingerprints for virtual screening: Design principles and generation of novel prototypes based on information theory. SAR and QSAR in Environmental Research, 2003, 14, 27-40.	1.0	25
555	Profile Scaling Increases the Similarity Search Performance of Molecular Fingerprints Containing Numerical Descriptors and Structural Keys. Journal of Chemical Information and Computer Sciences, 2003, 43, 1218-1225.	2.8	69
556	Design and Evaluation of a Molecular Fingerprint Involving the Transformation of Property Descriptor Values into a Binary Classification Scheme. Journal of Chemical Information and Computer Sciences, 2003, 43, 1151-1157.	2.8	78
557	Recursive Median Partitioning for Virtual Screening of Large Databases. Journal of Chemical Information and Computer Sciences, 2003, 43, 182-188.	2.8	36
558	Partitioning Methods for the Identification of Active Molecules. Current Medicinal Chemistry, 2003, 10, 707-715.	1.2	29

#	Article	IF	CITATIONS
559	Accurate Partitioning of Compounds Belonging to Diverse Activity Classes. Journal of Chemical Information and Computer Sciences, 2002, 42, 757-764.	2.8	36
560	Median Partitioning:  A Novel Method for the Selection of Representative Subsets from Large Compound Pools. Journal of Chemical Information and Computer Sciences, 2002, 42, 885-893.	2.8	33
561	Integration of virtual and high-throughput screening. Nature Reviews Drug Discovery, 2002, 1, 882-894.	21.5	782
562	Differential Shannon Entropy as a Sensitive Measure of Differences in Database Variability of Molecular Descriptors. Journal of Chemical Information and Computer Sciences, 2001, 41, 1060-1066.	2.8	54
563	Selected Concepts and Investigations in Compound Classification, Molecular Descriptor Analysis, and Virtual Screening. Journal of Chemical Information and Computer Sciences, 2001, 41, 233-245.	2.8	217
564	Fingerprint Scaling Increases the Probability of Identifying Molecules with Similar Activity in Virtual Screening Calculations. Journal of Chemical Information and Computer Sciences, 2001, 41, 746-753.	2.8	59
565	A dual fingerprint-based metric for the design of focused compound libraries and analogs. Journal of Molecular Modeling, 2001, 7, 125-131.	0.8	15
566	Combinatorial Preferences Affect Molecular Similarity/Diversity Calculations Using Binary Fingerprints and Tanimoto Coefficients. Journal of Chemical Information and Computer Sciences, 2000, 40, 163-166.	2.8	138
567	Evaluation of Descriptors and Mini-Fingerprints for the Identification of Molecules with Similar Activity. Journal of Chemical Information and Computer Sciences, 2000, 40, 1227-1234.	2.8	52
568	Distribution of Molecular Scaffolds and R-Groups Isolated from Large Compound Databases. Journal of Molecular Modeling, 1999, 5, 97-102.	0.8	19
569	Database Searching for Compounds with Similar Biological Activity Using Short Binary Bit String Representations of Molecules. Journal of Chemical Information and Computer Sciences, 1999, 39, 881-886.	2.8	65
570	Data Mining Approaches for Compound Selection and Iterative Screening. , 0, , 113-143.		1
571	Follow-up: Prospective compound design using the â€ [~] SAR Matrix' method and matrix-derived conditional probabilities of activity. F1000Research, 0, 4, 75.	0.8	9
572	Comprehensive knowledge base of two- and three-dimensional activity cliffs for medicinal and computational chemistry. F1000Research, 0, 4, 168.	0.8	1
573	Computational analysis, alignmentÂand extension of analogue series from medicinal chemistry. Future Science OA, 0, , .	0.9	0