List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2661314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 2003, 28, 313-318.	5.0	1,505
2	Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Letters, 2001, 1, 515-519.	9.1	1,181
3	The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 2006, 69, 485-492.	3.6	887
4	Biological properties of "naked―metal nanoparticlesâ~†. Advanced Drug Delivery Reviews, 2008, 60, 1289-1306.	13.7	771
5	Bioreduction of AuCl4â [^] lons by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed D.M. and S.S. thank the Council of Scientific and Industrial Research (CSIR), Government of India, for financial assistance Angewandte Chemie - International Edition, 2001, 40, 3585.	13.8	768
6	Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chemical Society Reviews, 2012, 41, 2943.	38.1	725
7	Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum. ChemBioChem, 2002, 3, 461.	2.6	560
8	Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond. Nano Letters, 2010, 10, 2543-2548.	9.1	537
9	Enzyme Mediated Extracellular Synthesis of CdS Nanoparticles by the Fungus,Fusarium oxysporum. Journal of the American Chemical Society, 2002, 124, 12108-12109.	13.7	509
10	Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opinion on Drug Delivery, 2010, 7, 753-763.	5.0	437
11	Antiangiogenic Properties of Gold Nanoparticles. Clinical Cancer Research, 2005, 11, 3530-3534.	7.0	426
12	Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Advanced Drug Delivery Reviews, 2010, 62, 346-361.	13.7	376
13	Targeted Delivery of Gemcitabine to Pancreatic Adenocarcinoma Using Cetuximab as a Targeting Agent. Cancer Research, 2008, 68, 1970-1978.	0.9	332
14	Inorganic Nanoparticles in Cancer Therapy. Pharmaceutical Research, 2011, 28, 237-259.	3.5	323
15	Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles. PLoS ONE, 2011, 6, e24374.	2.5	315
16	MiR-15a and MiR-16 Control Bmi-1 Expression in Ovarian Cancer. Cancer Research, 2009, 69, 9090-9095.	0.9	229
17	Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. Journal of Nanobiotechnology, 2008, 6, 2.	9.1	226
18	Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6700-6705.	7.1	208

#	Article	IF	CITATIONS
19	Cystathionine Beta-Synthase (CBS) Contributes to Advanced Ovarian Cancer Progression and Drug Resistance. PLoS ONE, 2013, 8, e79167.	2.5	205
20	Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 580-587.	3.3	196
21	Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. Journal of Nanobiotechnology, 2007, 5, 4.	9.1	175
22	Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2007, 3, 224-238.	3.3	166
23	Hydrogen sulfide signaling in mitochondria and disease. FASEB Journal, 2019, 33, 13098-13125.	0.5	162
24	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
25	Inhibition of Vascular Permeability Factor/Vascular Endothelial Growth Factor-mediated Angiogenesis by the Kruppel-like Factor KLF2*. Journal of Biological Chemistry, 2005, 280, 28848-28851.	3.4	147
26	Gold Nanoparticle Reprograms Pancreatic Tumor Microenvironment and Inhibits Tumor Growth. ACS Nano, 2016, 10, 10636-10651.	14.6	134
27	Porous silicon-based scaffolds for tissue engineering and other biomedical applications. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1451-1455.	1.8	131
28	Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14541-14546.	7.1	126
29	MICU1 drives glycolysis and chemoresistance in ovarian cancer. Nature Communications, 2017, 8, 14634.	12.8	118
30	Role of Hedgehog Signaling in Ovarian Cancer. Clinical Cancer Research, 2008, 14, 7659-7666.	7.0	113
31	Characterization and Catalytic Activity of Gold Nanoparticles Synthesized by Autoreduction of Aqueous Chloroaurate Ions with Fumed Silica. Chemistry of Materials, 2002, 14, 1678-1684.	6.7	107
32	Cystathionine βâ€ s ynthase regulates endothelial function via protein <i>S</i> â€ s ulfhydration. FASEB Journal, 2016, 30, 441-456.	0.5	102
33	Hybrid Nanosystems for Biomedical Applications. ACS Nano, 2021, 15, 2099-2142.	14.6	100
34	Preparation and stabilization of gold nanoparticles formed by in situ reduction of aqueous chloroaurate ions within surface-modified mesoporous silica. Microporous and Mesoporous Materials, 2003, 58, 201-211.	4.4	96
35	Triphase Catalysis over Titanium–Silicate Molecular Sieves under Solvent-free Conditions. Journal of Catalysis, 1998, 178, 101-107.	6.2	93
36	Phase transfer of aqueous colloidal gold particles into organic solutions containing fatty amine molecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 181, 255-259.	4.7	91

#	Article	IF	CITATIONS
37	In vivo toxicity studies of europium hydroxide nanorods in mice. Toxicology and Applied Pharmacology, 2009, 240, 88-98.	2.8	90
38	Fabrication and functional characterization of goldnanoconjugates for potential application in ovarian cancer. Journal of Materials Chemistry, 2010, 20, 547-554.	6.7	85
39	Identifying New Therapeutic Targets via Modulation of Protein Corona Formation by Engineered Nanoparticles. PLoS ONE, 2012, 7, e33650.	2.5	85
40	Understanding Protein–Nanoparticle Interaction: A New Gateway to Disease Therapeutics. Bioconjugate Chemistry, 2014, 25, 1078-1090.	3.6	76
41	Regulatory role of dynaminâ€2 in VEGFRâ€2/KDRâ€mediated endothelial signaling. FASEB Journal, 2005, 19, 1692-1694.	0.5	75
42	Enhancing Chemotherapy Response with Bmi-1 Silencing in Ovarian Cancer. PLoS ONE, 2011, 6, e17918.	2.5	74
43	Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. Journal of Experimental Therapeutics and Oncology, 2008, 7, 313-26.	0.5	69
44	Application of Gold Nanoparticles for Targeted Therapy in Cancer. Journal of Biomedical Nanotechnology, 2008, 4, 99-132.	1.1	68
45	Nanoparticle Interactions with the Tumor Microenvironment. Bioconjugate Chemistry, 2019, 30, 2247-2263.	3.6	66
46	Amphoterization of Colloidal Gold Particles by Capping with Valine Molecules and Their Phase Transfer from Water to Toluene by Electrostatic Coordination with Fatty Amine Molecules. Langmuir, 2000, 16, 9775-9783.	3.5	64
47	Sensitization of ovarian cancer cells to cisplatin by gold nanoparticles. Oncotarget, 2014, 5, 6453-6465.	1.8	62
48	Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy, 2016, 12, 659-670.	9.1	61
49	LPA Induces Metabolic Reprogramming in Ovarian Cancer via a Pseudohypoxic Response. Cancer Research, 2018, 78, 1923-1934.	0.9	61
50	Therapeutic evaluation of microRNA-15a and microRNA-16 in ovarian cancer. Oncotarget, 2016, 7, 15093-15104.	1.8	61
51	Designing Nanoconjugates to Effectively Target Pancreatic Cancer Cells In Vitro and In Vivo. PLoS ONE, 2011, 6, e20347.	2.5	60
52	Inorganic phosphate nanorods are a novel fluorescent label in cell biology. Journal of Nanobiotechnology, 2006, 4, 11.	9.1	53
53	Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide. Nanotechnology, 2010, 21, 305102.	2.6	48
54	Efficient Delivery of Gold Nanoparticles by Dual Receptor Targeting. Advanced Materials, 2011, 23, 5034-5038.	21.0	48

#	Article	IF	CITATIONS
55	Enhancement in the reaction rates in the hydroxylation of aromatics over TS-1/H2O2 under solvent-free triphase conditions. Catalysis Today, 1999, 49, 185-191.	4.4	47
56	Strategies for Delivering Nanoparticles across Tumor Blood Vessels. Advanced Functional Materials, 2021, 31, 2007363.	14.9	46
57	Gold Nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress, 2019, 3, 267-279.	3.2	45
58	Synergistic interventional photothermal therapy and immunotherapy using an iron oxide nanoplatform for the treatment of pancreatic cancer. Acta Biomaterialia, 2022, 138, 453-462.	8.3	44
59	Biorelevant mesoporous silicon / polymer composites: directed assembly, disassembly, and controlled release. Biomedical Microdevices, 2006, 8, 9-15.	2.8	41
60	Lanthanide Phosphate Nanorods as Inorganic Fluorescent Labels in Cell Biology Research. Clinical Chemistry, 2007, 53, 2029-2031.	3.2	41
61	Switching the Targeting Pathways of a Therapeutic Antibody by Nanodesign. Angewandte Chemie - International Edition, 2012, 51, 1563-1567.	13.8	41
62	Tuning Pharmacokinetics and Biodistribution of a Targeted Drug Delivery System Through Incorporation of a Passive Targeting Component. Scientific Reports, 2014, 4, 5669.	3.3	41
63	Evaluating the Mechanism and Therapeutic Potential of PTC-028, a Novel Inhibitor of BMI-1 Function in Ovarian Cancer. Molecular Cancer Therapeutics, 2018, 17, 39-49.	4.1	40
64	Gold Nanoparticle Transforms Activated Cancer-Associated Fibroblasts to Quiescence. ACS Applied Materials & Interfaces, 2019, 11, 26060-26068.	8.0	40
65	Gold Nanoparticles Bearing Functional Anti-Cancer Drug and Anti-Angiogenic Agent: A "2 in 1" System with Potential Application in Cancer Therapeutics. Journal of Biomedical Nanotechnology, 2005, 1, 224-228.	1.1	39
66	Gold Nanoparticles Disrupt Tumor Microenvironment - Endothelial Cell Cross Talk To Inhibit Angiogenic Phenotypes <i>in Vitro</i> . Bioconjugate Chemistry, 2019, 30, 1724-1733.	3.6	38
67	Probing Novel Roles of the Mitochondrial Uniporter in Ovarian Cancer Cells Using Nanoparticles. Journal of Biological Chemistry, 2013, 288, 17610-17618.	3.4	37
68	When the chains do not break: the role of USP10 in physiology and pathology. Cell Death and Disease, 2020, 11, 1033.	6.3	35
69	Switching the intracellular pathway and enhancing the therapeutic efficacy of small interfering RNA by auroliposome. Science Advances, 2020, 6, eaba5379.	10.3	35
70	Cystathionine βâ€synthase regulates mitochondrial morphogenesis in ovarian cancer. FASEB Journal, 2018, 32, 4145-4157.	0.5	33
71	Analysing the nanoparticle-protein corona for potential molecular target identification. Journal of Controlled Release, 2020, 322, 122-136.	9.9	33
72	Cancer Nanotechnology: Emerging Role of Gold Nanoconjugates. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 965-973.	1.7	32

#	Article	IF	CITATIONS
73	Experimental conditions influence the formation and composition of the corona around gold nanoparticles. Cancer Nanotechnology, 2021, 12, 1.	3.7	32
74	Gold nanoparticles inhibit activation of cancer-associated fibroblasts by disrupting communication from tumor and microenvironmental cells. Bioactive Materials, 2021, 6, 326-332.	15.6	31
75	Role of cystathionine beta synthase in lipid metabolism in ovarian cancer. Oncotarget, 2015, 6, 37367-37384.	1.8	31
76	Sepsis in the era of data-driven medicine: personalizing risks, diagnoses, treatments and prognoses. Briefings in Bioinformatics, 2020, 21, 1182-1195.	6.5	29
77	Micro <scp>RNA</scp> â€195 controls <scp>MICU</scp> 1 expression and tumor growth in ovarian cancer. EMBO Reports, 2020, 21, e48483.	4.5	29
78	Inhibiting the Growth of Pancreatic Adenocarcinoma In Vitro and In Vivo through Targeted Treatment with Designer Gold Nanotherapeutics. PLoS ONE, 2013, 8, e57522.	2.5	27
79	MDR1 mediated chemoresistance: BMI1 and TIP60 in action. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 983-993.	1.9	25
80	Revealing macropinocytosis using nanoparticles. Molecular Aspects of Medicine, 2022, 83, 100993.	6.4	25
81	Cystathione β-synthase regulates HIF-1α stability through persulfidation of PHD2. Science Advances, 2020, 6, .	10.3	24
82	Cystathionine beta synthase regulates mitochondrial dynamics and function in endothelial cells. FASEB Journal, 2020, 34, 9372-9392.	0.5	23
83	Hepatoma derived growth factor (HDGF) dynamics in ovarian cancer cells. Apoptosis: an International Journal on Programmed Cell Death, 2016, 21, 329-339.	4.9	22
84	Active Targeting Significantly Outperforms Nanoparticle Size in Facilitating Tumor-Specific Uptake in Orthotopic Pancreatic Cancer. ACS Applied Materials & Interfaces, 2021, 13, 49614-49630.	8.0	21
85	Small Non-Coding-RNA in Gynecological Malignancies. Cancers, 2021, 13, 1085.	3.7	20
86	Mitochondrial BMI1 maintains bioenergetic homeostasis in cells. FASEB Journal, 2016, 30, 4042-4055.	0.5	18
87	BMI1, a new target of CK2α. Molecular Cancer, 2017, 16, 56.	19.2	18
88	<p>Targeting Pancreatic Cancer Cells and Stellate Cells Using Designer Nanotherapeutics in vitro</p> . International Journal of Nanomedicine, 2020, Volume 15, 991-1003.	6.7	18
89	Inhibition of BMI1, a Therapeutic Approach in Endometrial Cancer. Molecular Cancer Therapeutics, 2018, 17, 2136-2143.	4.1	15
90	Patient-Derived Xenografts of High-Grade Serous Ovarian Cancer Subtype as a Powerful Tool in Pre-Clinical Research. Cancers, 2021, 13, 6288.	3.7	15

#	Article	IF	CITATIONS
91	Fabrication of Gold Nanoparticle for Potential Application in Multiple Myeloma. Journal of Biomedical Nanotechnology, 2008, 4, 499-507.	1.1	14
92	A simple synthesis of a targeted drug delivery system with enhanced cytotoxicity. Chemical Communications, 2011, 47, 8530.	4.1	14
93	Cystathionine β-Synthase Is Necessary for Axis Development in Vivo. Frontiers in Cell and Developmental Biology, 2018, 6, 14.	3.7	14
94	Aberrant expression of JNK-associated leucine-zipper protein, JLP, promotes accelerated growth of ovarian cancer. Oncotarget, 2016, 7, 72845-72859.	1.8	13
95	Probing Cellular Processes Using Engineered Nanoparticles. Bioconjugate Chemistry, 2018, 29, 1793-1808.	3.6	11
96	A core-shell nanomaterial with endogenous therapeutic and diagnostic functions. Cancer Nanotechnology, 2010, 1, 13-18.	3.7	10
97	Ubiquitinâ€binding associated protein 2 regulates KRAS activation and macropinocytosis in pancreatic cancer. FASEB Journal, 2020, 34, 12024-12039.	0.5	10
98	Vascular Endothelial Growth Factor as an Immediate-Early Activator of Ultraviolet-Induced Skin Injury. Mayo Clinic Proceedings, 2022, 97, 154-164.	3.0	8
99	Targeting the TGFÎ ² pathway in uterine carcinosarcoma. Cell Stress, 2020, 4, 252-260.	3.2	7
100	Unraveling Autocrine Signaling Pathways through Metabolic Fingerprinting in Serous Ovarian Cancer Cells. Biomedicines, 2021, 9, 1927.	3.2	7
101	Size discrimination of colloidal nanoparticles by thiol-functionalized MCM-41 mesoporous molecular sieves. PhysChemComm, 2000, 3, 15.	0.8	6
102	KRCC1: A potential therapeutic target in ovarian cancer. FASEB Journal, 2020, 34, 2287-2300.	0.5	5
103	Disabling partners in crime: Gold nanoparticles disrupt multicellular communications within the tumor microenvironment to inhibit ovarian tumor aggressiveness. Materials Today, 2022, , .	14.2	5
104	Nano-ablative immunotherapy for cancer treatment. Nanophotonics, 2021, 10, 3247-3266.	6.0	4
105	Evaluation of I-TAC as a potential early plasma marker to differentiate between critical and non-critical COVID-19. Cell Stress, 2021, 6, 6-16.	3.2	3
106	Synthesis of Silver Nanocubes by Photoreduction of Silver Salts in the Presence of Proteins. International Journal of Green Nanotechnology, 2011, 3, 134-139.	0.3	2
107	Back Cover: Switching the Targeting Pathways of a Therapeutic Antibody by Nanodesign (Angew. Chem.) Tj ETQo	1 1 0.784 13.8 	314 rgBT /O
108	μ Opioid Receptor Stimulates a Growth Promoting and Pro-Angiogenic Tumor Microenvironment by Transactivating VEGF Receptor-2/Flk-1 Blood, 2005, 106, 3687-3687.	1.4	0

#	Article	IF	CITATIONS
109	Hepatomaâ€Derived Growth Factor (HDGF) Acts in Ovarian Cancer via Distinct Intracellular and Extracellular Mechanisms. FASEB Journal, 2015, 29, 726.6.	0.5	0
110	Targeting BMI1 mitigates chemoresistance in ovarian cancer. Genes and Diseases, 2022, 9, 1415-1418.	3.4	0