Xavier Martini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2660969/publications.pdf

Version: 2024-02-01

394421 454955 1,104 62 19 30 citations h-index g-index papers 62 62 62 953 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Seasonal Movement Patterns and Long-Range Dispersal of Asian Citrus Psyllid in Florida Citrus. Journal of Economic Entomology, 2015, 108, 3-10.	1.8	111
2	Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal. PLoS ONE, 2015, 10, e0129373.	2.5	81
3	Abdominal Color of the Asian Citrus Psyllid (Hemiptera: Liviidae) is Associated with Flight Capabilities. Annals of the Entomological Society of America, 2014, 107, 842-847.	2.5	62
4	Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insect vector. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	59
5	Volatiles from the symbiotic fungus <i>Raffaelea lauricola</i> are synergistic with Manuka lures for increased capture of the Redbay ambrosia beetle <i>Xyleborus glabratus</i> . Agricultural and Forest Entomology, 2014, 16, 87-94.	1.3	47
6	Plant volatiles and density-dependent conspecific female odors are used by Asian citrus psyllid to evaluate host suitability on a spatial scale. Arthropod-Plant Interactions, 2014, 8, 453-460.	1.1	47
7	Synthetic blends of volatile, phytopathogen-induced odorants can be used to manipulate vector behavior. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	35
8	Quantitative impact assessment of spray coverage and pest behavior on contact pesticide performance. Pest Management Science, 2012, 68, 1471-1477.	3.4	33
9	The Immediate Source of the Oviposition-Deterring Pheromone Produced by Larvae of Adalia bipunctata (L.) (Coleoptera, Coccinellidae). Journal of Insect Behavior, 2006, 19, 231-240.	0.7	31
10	Attraction of Redbay Ambrosia Beetle, Xyleborus Glabratus, To Leaf Volatiles of its Host Plants in North America. Journal of Chemical Ecology, 2015, 41, 613-621.	1.8	30
11	The Fungus Raffaelea lauricola Modifies Behavior of Its Symbiont and Vector, the Redbay Ambrosia Beetle (Xyleborus Glabratus), by Altering Host Plant Volatile Production. Journal of Chemical Ecology, 2017, 43, 519-531.	1.8	30
12	Occurrence of <i>Diaphorina citri</i> (Hemiptera: Liviidae) in an Unexpected Ecosystem: The Lake Kissimmee State Park Forest, Florida. Florida Entomologist, 2013, 96, 658-660.	0.5	29
13	Disruption of Vector Host Preference with Plant Volatiles May Reduce Spread of Insect-Transmitted Plant Pathogens. Journal of Chemical Ecology, 2016, 42, 357-367.	1.8	29
14	The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri. PLoS ONE, 2016, 11, e0149815.	2.5	29
15	Absence of windbreaks and replanting citrus in solid sets increase density of Asian citrus psyllid populations. Agriculture, Ecosystems and Environment, 2015, 212, 168-174.	5. 3	27
16	Innate immune system capabilities of the Asian citrus psyllid, Diaphorina citri. Journal of Invertebrate Pathology, 2017, 148, 94-101.	3.2	26
17	Drought stress affects response of phytopathogen vectors and their parasitoids to infection―and damageâ€induced plant volatile cues. Ecological Entomology, 2017, 42, 721-730.	2.2	26
18	Eucalyptol is an Attractant of the Redbay Ambrosia Beetle, Xyleborus Glabratus. Journal of Chemical Ecology, 2014, 40, 355-362.	1.8	24

#	Article	IF	CITATIONS
19	Evaluation of semiochemical based push-pull strategy for population suppression of ambrosia beetle vectors of laurel wilt disease in avocado. Scientific Reports, 2020, 10, 2670.	3.3	23
20	The Influence of Visual and Olfactory Cues in Host Selection for Bemisia tabaci Biotype B in the Presence or Absence of Tomato Yellow Leaf Curl Virus. Insects, 2020, 11, 115.	2.2	22
21	Factors Affecting the Overwintering Abundance of the Asian Citrus Psyllid (Hemiptera: Liviidae) in Florida Citrus (Sapindales: Rutaceae) Orchards. Florida Entomologist, 2016, 99, 178-186.	0.5	21
22	Male Psyllids Differentially Learn in the Context of Copulation. Insects, 2017, 8, 16.	2.2	21
23	Influence of Abiotic Factors on Flight Initiation by Asian Citrus Psyllid (Hemiptera: Liviidae). Environmental Entomology, 2017, 46, 369-375.	1.4	20
24	Evolution of cannibalism and female's response to ovipositionâ€deterring pheromone in aphidophagous predators. Journal of Animal Ecology, 2009, 78, 964-972.	2.8	17
25	Effects of Wind, Temperature, and Barometric Pressure on Asian Citrus Psyllid (Hemiptera: Liviidae) flight behavior. Journal of Economic Entomology, 2018, 111, 2570-2577.	1.8	17
26	Sampling and interpretation of psyllid nymph counts in potatoes. Entomologia Experimentalis Et Applicata, 2012, 143, 103-110.	1.4	15
27	Temporal Decline in Pathogen-Mediated Release of Methyl Salicylate Associated With Decreasing Vector Preference for Infected Over Uninfected Plants. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	15
28	High Temperatures Decrease the Flight Capacity of Diaphorina citri Kuwayama (Hemiptera: Liviidae). Insects, 2021, 12, 394.	2.2	15
29	Repellent Activity of Botanical Oils against Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae). Insects, 2016, 7, 35.	2.2	13
30	Flight Capacities and Diurnal Flight Patterns of the Ambrosia Beetles, Xyleborus glabratus and Monarthrum mali (Coleoptera: Curculionidae). Environmental Entomology, 2017, 46, 729-734.	1.4	13
31	Verbenone reduces landing of the redbay ambrosia beetle, vector of the laurel wilt pathogen, on live standing redbay trees. Agricultural and Forest Entomology, 2020, 22, 83-91.	1.3	13
32	A Decision-Support Tool to Predict Spray Deposition of Insecticides in Commercial Potato Fields and Its Implications for Their Performance. Journal of Economic Entomology, 2011, 104, 1138-1145.	1.8	11
33	Response of Diaphorina citri (Hemiptera: Liviidae) to volatiles characteristic of preferred citrus hosts. Arthropod-Plant Interactions, 2019, 13, 367-374.	1.1	11
34	Phenology, Distribution, and Diversity of Dung Beetles (Coleoptera: Scarabaeidae) in North Florida's Pastures and Forests. Environmental Entomology, 2019, 48, 847-855.	1.4	9
35	The Search Behavior of Omnivorous Thrips Larvae is Influenced by Spider Mite Cues. Journal of Insect Behavior, 2015, 28, 593-603.	0.7	8
36	Use of Semiochemicals for the Management of the Redbay Ambrosia Beetle. Insects, 2020, 11, 796.	2.2	8

3

#	Article	IF	CITATIONS
37	Progress Toward an Attract-and-Kill Device for Asian Citrus Psyllid (Hemiptera: Liviidae) Using Volatile Signatures of Citrus Infected With Huanglongbing as the Attractant. Journal of Insect Science, 2020, 20, .	1.5	8
38	Distribution, Phenology, and Overwintering Survival of Asian Citrus Psyllid (Hemiptera: Liviidae), in Urban and Grove Habitats in North Florida. Journal of Economic Entomology, 2020, 113, 1080-1087.	1.8	8
39	Wind Speed and Direction Drive Assisted Dispersal of Asian Citrus Psyllid. Environmental Entomology, 2022, 51, 305-312.	1.4	8
40	Plant Functional Genomics in A Few Days: Laser-Assisted Delivery of Double-Stranded RNA to Higher Plants. Plants, 2021, 10, 93.	3.5	7
41	Positive association between thrips and spider mites in seedling cotton. Agricultural and Forest Entomology, 2013, 15, 197-203.	1.3	6
42	Patterns of habitat use by the Asian citrus psyllid, Diaphorina citri, as influenced by abiotic and biotic growing conditions. Agricultural and Forest Entomology, 2017, 19, 171-180.	1.3	6
43	Ladybird beetle trails reduce host acceptance by Diaphorina citri Kuwayama (Hemiptera: Liviidae). Biological Control, 2018, 121, 30-35.	3.0	6
44	Foraging behavior responses of Orius insidiosus to thrips cues. Entomologia Experimentalis Et Applicata, 2020, 168, 716-722.	1.4	6
45	Repelling whitefly (Bemisia tabaci) using limonene-scented kaolin: A novel pest management strategy. Crop Protection, 2022, 154, 105905.	2.1	6
46	Cold acclimation increases Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) survival during exposure to freezing temperatures. Insect Science, 2021, , .	3.0	4
47	Crapemyrtle Bark Scale Acanthococcus (=Eriococcus) lagerstroemiae (Kuwana) (Insecta: Hemiptera:) Tj ETQq1 1	0.784314	rgBT /Overlo
48	Repellent semiochemical solutions to mitigate the impacts of global climate change on arthropod pests., 2022,, 279-322.		3
49	In Vitro Effects of Leaf Extracts from Brassica rapa on the Growth of Two Entomopathogenic Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 779.	3.5	2
50	Population Fluctuations of Diaphorina citri and Its Natural Enemies in Response to Various Management Practices in Florida. Florida Entomologist, 2021, 104, .	0.5	2
51	Abiotic Factors Affecting Canola Establishment and Insect Pest Dynamics. International Journal of Agronomy, 2012, 2012, 1-9.	1.2	1
52	Insect Management for Onions, Leek, and Garlic. Edis, 2021, 2021, 2.	0.1	0
53	2021–2022 Florida Citrus Production Guide: Plant Bugs, Chewing Insect Pests, Caribbean Fruit Fly, and Thrips. Edis, 0, , .	0.1	0
54	Chapter 7. Cucurbit Production. Edis, 0, , .	0.1	0

#	Article	IF	CITATIONS
55	2021–2022 Florida Citrus Production Guide: Rust Mites, Spider Mites, and Other Phytophagous Mites. Edis, 0, , .	0.1	O
56	Chapter 12. Onion, Leek, and Chive Production in Florida. Edis, 0, , .	0.1	0
57	Insect Management for Sweet Potatoes. Edis, 2021, 2021, .	0.1	O
58	Environmental factors and infection with < i > Candidatus Liberibacter asiaticus < / i > influence long-range dispersal of the Asian citrus psyllid. , 2016, , .		0
59	2020–2021 Florida Citrus Production Guide: Rust Mites, Spider Mites, and other Phytophagous Mites. Edis, 0, , .	0.1	0
60	2020–2021 Florida Citrus Production Guide: Soft-Bodied Insects Attacking Foliage and Fruit. Edis, 0, , .	0.1	0
61	2020–2021 Florida Citrus Production Guide: Plant Bugs, Chewing Insect Pests, Caribbean Fruit Fly, and Thrips. Edis, 0, , .	0.1	0
62	Repellency of volatiles from Martinique island guava varieties against Asian citrus psyllids. Arthropod-Plant Interactions, 0, , .	1.1	0