John F Crary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2660950/publications.pdf Version: 2024-02-01

186265 123424 5,007 66 28 61 citations h-index g-index papers 84 84 84 6569 docs citations times ranked citing authors all docs

ΙΟΗΝ Ε ΟΡΛΟΥ

#	Article	IF	CITATIONS
1	Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathologica, 2014, 128, 755-766.	7.7	1,060
2	The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathologica, 2016, 131, 75-86.	7.7	708
3	Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathologica, 2016, 131, 87-102.	7.7	380
4	Axonally Synthesized ATF4 Transmits a Neurodegenerative Signal across Brain Regions. Cell, 2014, 158, 1159-1172.	28.9	266
5	Beta-amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathologica, 2015, 130, 21-34.	7.7	234
6	Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease. Genome Medicine, 2016, 8, 104.	8.2	224
7	Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. Journal of Clinical Investigation, 2015, 125, 681-686.	8.2	171
8	Characterization and Molecular Profiling of PSEN1 Familial Alzheimer's Disease iPSC-Derived Neural Progenitors. PLoS ONE, 2014, 9, e84547.	2.5	148
9	PART, a distinct tauopathy, different from classical sporadic Alzheimer disease. Acta Neuropathologica, 2015, 129, 757-762.	7.7	139
10	The Second NINDS/NIBIB Consensus Meeting to Define Neuropathological Criteria for the Diagnosis of Chronic Traumatic Encephalopathy. Journal of Neuropathology and Experimental Neurology, 2021, 80, 210-219.	1.7	111
11	Neurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR-T cell therapy. Nature Medicine, 2021, 27, 2099-2103.	30.7	92
12	In vivo distribution of α-synuclein in multiple tissues and biofluids in Parkinson disease. Neurology, 2020, 95, e1267-e1284.	1.1	91
13	Assembly and Interrogation of Alzheimer's Disease Genetic Networks Reveal Novel Regulators of Progression. PLoS ONE, 2015, 10, e0120352.	2.5	87
14	Single-nucleus transcriptome analysis of human brain immune response in patients with severe COVID-19. Genome Medicine, 2021, 13, 118.	8.2	81
15	Artificial intelligence in neuropathology: deep learning-based assessment of tauopathy. Laboratory Investigation, 2019, 99, 1019-1029.	3.7	79
16	The MAPT H1 haplotype is associated with tangle-predominant dementia. Acta Neuropathologica, 2012, 124, 693-704.	7.7	72
17	PI3K and Bcl-2 Inhibition Primes Glioblastoma Cells to Apoptosis through Downregulation of Mcl-1 and Phospho-BAD. Molecular Cancer Research, 2014, 12, 987-1001.	3.4	67
18	A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies. Stem Cell Reports, 2019, 13, 939-955.	4.8	62

JOHN F CRARY

#	Article	IF	CITATIONS
19	High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development. PLoS ONE, 2018, 13, e0195771.	2.5	56
20	Comparison of symptomatic and asymptomatic persons with primary age-related tauopathy. Neurology, 2017, 89, 1707-1715.	1.1	47
21	Primary age-related tauopathy and the amyloid cascade hypothesis: the exception that proves the rule?. Journal of Neurology and Neuromedicine, 2016, 1, 53-57.	0.9	43
22	Common Genetic Variation in Humans Impacts InÂVitro Susceptibility to SARS-CoV-2 Infection. Stem Cell Reports, 2021, 16, 505-518.	4.8	39
23	Variation in TMEM106B in chronic traumatic encephalopathy. Acta Neuropathologica Communications, 2018, 6, 115.	5.2	38
24	Evolution of neuronal and glial tau isoforms in chronic traumatic encephalopathy. Brain Pathology, 2020, 30, 913-925.	4.1	38
25	PARP Inhibition Restores Extrinsic Apoptotic Sensitivity in Glioblastoma. PLoS ONE, 2014, 9, e114583.	2.5	38
26	Perfusion fixation in brain banking: a systematic review. Acta Neuropathologica Communications, 2019, 7, 146.	5.2	36
27	Cognitive trajectory in mild cognitive impairment due to primary age-related tauopathy. Brain, 2020, 143, 611-621.	7.6	36
28	Early Selective Vulnerability of the CA2 Hippocampal Subfield in Primary Age-Related Tauopathy. Journal of Neuropathology and Experimental Neurology, 2021, 80, 102-111.	1.7	35
29	Immunohistochemical Method and Histopathology Judging for the Systemic Synuclein Sampling Study (S4). Journal of Neuropathology and Experimental Neurology, 2018, 77, 793-802.	1.7	32
30	Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study. Acta Neuropathologica Communications, 2021, 9, 134.	5.2	32
31	A chromosomal connectome for psychiatric and metabolic risk variants in adult dopaminergic neurons. Genome Medicine, 2020, 12, 19.	8.2	31
32	Differences in Cognitive Impairment in Primary Age-Related Tauopathy Versus Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2019, 78, 219-228.	1.7	29
33	Integrating whole-genome sequencing with multi-omic data reveals the impact of structural variants on gene regulation in the human brain. Nature Neuroscience, 2022, 25, 504-514.	14.8	27
34	Association of <i>APOE</i> Genotypes and Chronic Traumatic Encephalopathy. JAMA Neurology, 2022, 79, 787.	9.0	27
35	Chronic Intermittent Hypoxia Enhances Pathological Tau Seeding, Propagation, and Accumulation and Exacerbates Alzheimer-like Memory and Synaptic Plasticity Deficits and Molecular Signatures. Biological Psychiatry, 2022, 91, 346-358.	1.3	26
36	Magnetic resonance imaging brain atrophy assessment in primary age-related tauopathy (PART). Acta Neuropathologica Communications, 2019, 7, 204.	5.2	25

John F Crary

#	Article	IF	CITATIONS
37	Clinical diagnoses among individuals with primary age-related tauopathy versus Alzheimer's neuropathology. Laboratory Investigation, 2019, 99, 1049-1055.	3.7	23
38	Earlyâ€onset pathologically proven multiple system atrophy with LRRK2 G2019S mutation. Movement Disorders, 2019, 34, 1080-1082.	3.9	20
39	The Utility of the National Alzheimer's Coordinating Center's Database for the Rapid Assessment of Evolving Neuropathologic Conditions. Alzheimer Disease and Associated Disorders, 2020, 34, 105-111.	1.3	19
40	Increased Tau Expression Correlates with Neuronal Maturation in the Developing Human Cerebral Cortex. ENeuro, 2020, 7, ENEURO.0058-20.2020.	1.9	19
41	Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathologica, 2022, 143, 33-53.	7.7	19
42	Quantitative Assessment of Pathological Tau Burden in Essential Tremor: A Postmortem Study. Journal of Neuropathology and Experimental Neurology, 2019, 78, 31-37.	1.7	18
43	βâ€∎myloid and tau pathology in the aging feline brain. Journal of Comparative Neurology, 2020, 528, 112-117.	1.6	17
44	Asymmetry of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2021, 80, 436-445.	1.7	17
45	Dysregulation of mitochondrial and proteolysosomal genes in Parkinson's disease myeloid cells. Nature Aging, 2021, 1, 850-863.	11.6	16
46	Strong Correlation of Genome-Wide Expression after Traumatic Brain InjuryIn VitroandIn VivoImplicates a Role for SORLA. Journal of Neurotrauma, 2017, 34, 97-108.	3.4	15
47	COllaborative Neuropathology NEtwork Characterizing ouTcomes of TBI (CONNECT-TBI). Acta Neuropathologica Communications, 2021, 9, 32.	5.2	13
48	Practical Considerations in the Diagnosis of Mild Chronic Traumatic Encephalopathy and Distinction From Age-Related Tau Astrogliopathy. Journal of Neuropathology and Experimental Neurology, 2020, 79, 921-924.	1.7	12
49	The effect of MAPT haplotype on neocortical Lewy body pathology in Parkinson disease. Journal of Neural Transmission, 2016, 123, 583-588.	2.8	11
50	Chronic Traumatic Encephalopathy and Neuropathological Comorbidities. Seminars in Neurology, 2020, 40, 384-393.	1.4	10
51	Tau Isoform Profile in Essential Tremor Diverges From Other Tauopathies. Journal of Neuropathology and Experimental Neurology, 2021, 80, 835-843.	1.7	10
52	Dysregulated coordination of MAPT exon 2 and exon 10 splicing underlies different tau pathologies in PSP and AD. Acta Neuropathologica, 2022, 143, 225-243.	7.7	10
53	Antemortem detection of Parkinson's disease pathology in peripheral biopsies using artificial intelligence. Acta Neuropathologica Communications, 2022, 10, 21.	5.2	8
54	ldentification of HnRNPC as a novel Tau exon 10 splicing factor using RNA antisense purification mass spectrometry. RNA Biology, 2022, 19, 104-116.	3.1	7

JOHN F CRARY

#	Article	IF	CITATIONS
55	Divergent magnetic resonance imaging atrophy patterns in Alzheimer's disease and primary age-related tauopathy. Neurobiology of Aging, 2022, 117, 1-11.	3.1	6
56	Neuropathology associated with SARS-CoV-2 infection. Lancet, The, 2021, 397, 276-277.	13.7	5
57	Neocortical Neurofibrillary Degeneration in Primary Age-Related Tauopathy. Journal of Neuropathology and Experimental Neurology, 2022, 81, 146-148.	1.7	4
58	The Frequency of Cerebral Amyloid Angiopathy in Primary Age-Related Tauopathy. Journal of Neuropathology and Experimental Neurology, 2022, 81, 246-248.	1.7	2
59	O1â€I 3â€03: COGNITIVE IMPAIRMENT IN PRIMARY AGEâ€RELATED TAUOPATHY VERSUS ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P254.	0.8	1
60	Chronic intermittent hypoxia enhances tau seeding and propagation and exacerbates Alzheimer'sâ€like memory and synaptic plasticity deficits and molecular signatures. Alzheimer's and Dementia, 2020, 16, e045408.	0.8	1
61	P1â€499: CLINICAL DIAGNOSES AMONG INDIVIDUALS WITH PRIMARY AGEâ€RELATED TAUOPATHY VERSUS ALZHEIMER'S NEUROPATHOLOGY. Alzheimer's and Dementia, 2018, 14, P520.	0.8	0
62	P4â€487: BRAIN SOMATIC MOSAICISM IN 17Q21.31 <i>MAPT</i> H1â€ASSOCIATED ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2019, 15, P1499.	0.8	0
63	The status of digital pathology and machine learning within Alzheimer's Disease Centers. Alzheimer's and Dementia, 2020, 16, e043916.	0.8	0
64	Genome wide association study of chronic traumatic encephalopathy. Alzheimer's and Dementia, 2020, 16, e046505.	0.8	0
65	Screening peripheral biopsies for alphaâ€synuclein pathology using deep machine learning. Alzheimer's and Dementia, 2020, 16, e047358.	0.8	0
66	The relationship between first-degree family history of dementia, tau pathology and functional impairment among brain donors at risk for chronic traumatic encephalopathy Alzheimer's and Dementia, 2021, 17 Suppl 3, e056349.	0.8	0