List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2660713/publications.pdf Version: 2024-02-01

		57758	29157
141	11,543	44	104
papers	citations	h-index	g-index
143	143	143	13121
all docs	docs citations	times ranked	citing authors

PUUDD TODENSMA

#	Article	IF	CITATIONS
1	ICAM3-Fc Outperforms Receptor-Specific Antibodies Targeted Nanoparticles to Dendritic Cells for Cross-Presentation. Molecules, 2019, 24, 1825.	3.8	10
2	The Dilemma of Cure and Damage in Oligodendroglioma: Ways to Tip the Balance Away from the Damage. Cancers, 2018, 10, 431.	3.7	7
3	Immune Curbing of Cancer Stem Cells by CTLs Directed to NANOG. Frontiers in Immunology, 2018, 9, 1412.	4.8	40
4	Different Lipid Regulation in Ovarian Cancer: Inhibition of the Immune System. International Journal of Molecular Sciences, 2018, 19, 273.	4.1	22
5	Controlled release of antigen and Toll-like receptor ligands from PLGA nanoparticles enhances immunogenicity. Nanomedicine, 2017, 12, 491-510.	3.3	44
6	Umbilical cord blood CD34 ⁺ progenitor-derived NK cells efficiently kill ovarian cancer spheroids and intraperitoneal tumors in NOD/SCID/IL2Rg ^{null} mice. OncoImmunology, 2017, 6, e1320630.	4.6	50
7	Isolation of Mononuclear Cell Populations from Ovarian Carcinoma Ascites. Bio-protocol, 2017, 7, e2219.	0.4	5
8	Expansion of a BDCA1+CD14+ Myeloid Cell Population in Melanoma Patients May Attenuate the Efficacy of Dendritic Cell Vaccines. Cancer Research, 2016, 76, 4332-4346.	0.9	93
9	The European antibody network's practical guide to finding and validating suitable antibodies for research. MAbs, 2016, 8, 27-36.	5.2	46
10	Immune Containment of Cancer Stem Cells. Immunochemistry & Immunopathology, 2016, 2, .	0.4	0
11	Lithium inhibits palatal fusion and osteogenic differentiation in palatal shelves in vitro. Archives of Oral Biology, 2015, 60, 501-507.	1.8	12
12	Humoral and cellular immune responses after influenza vaccination in patients with postcancer fatigue. Human Vaccines and Immunotherapeutics, 2015, 11, 1634-1640.	3.3	2
13	Cellular immunotherapy in ovarian cancer: Targeting the stem of recurrence. Gynecologic Oncology, 2015, 137, 335-342.	1.4	32
14	Restoring immunosurveillance by dendritic cell vaccines and manipulation of the tumor microenvironment. Immunobiology, 2015, 220, 243-248.	1.9	13
15	Cord Blood Mesenchymal Stem Cells Suppress DC-T Cell Proliferation via Prostaglandin B2. Stem Cells and Development, 2014, 23, 1582-1593.	2.1	16
16	Wnt16 is Involved in Intramembranous Ossification and Suppresses Osteoblast Differentiation Through the Wnt/β atenin Pathway. Journal of Cellular Physiology, 2014, 229, 384-392.	4.1	36
17	The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients. Cellular Oncology (Dordrecht), 2013, 36, 363-374.	4.4	56
18	The Impact of Cell Source, Culture Methodology, Culture Location, and Individual Donors on Gene Expression Profiles of Bone Marrow-Derived and Adipose-Derived Stromal Cells. Stem Cells and Development, 2013, 22, 1086-1096.	2.1	45

#	Article	IF	CITATIONS
19	Mesenchymal stem cell-conditioned medium accelerates regeneration of human renal proximal tubule epithelial cells after gentamicin toxicity. Experimental and Toxicologic Pathology, 2013, 65, 595-600.	2.1	46
20	The Multiple Faces of Prostaglandin E2 G-Protein Coupled Receptor Signaling during the Dendritic Cell Life Cycle. International Journal of Molecular Sciences, 2013, 14, 6542-6555.	4.1	33
21	Functional OCT4-specific CD4 ⁺ and CD8 ⁺ T cells in healthy controls and ovarian cancer patients. Oncolmmunology, 2013, 2, e24271.	4.6	11
22	Aiming to immune elimination of ovarian cancer stem cells. World Journal of Stem Cells, 2013, 5, 149.	2.8	6
23	Another look at the life of a neutrophil. World Journal of Hematology, 2013, 2, 44.	0.1	31
24	Enhancing immunogenicity and cross-reactivity of HIV-1 antigens by <i>in vivo</i> targeting to dendritic cells. Nanomedicine, 2012, 7, 1591-1610.	3.3	5
25	Deciphering the Message Broadcast by Tumor-Infiltrating Dendritic Cells. American Journal of Pathology, 2012, 181, 733-742.	3.8	66
26	Quantifying the efficacy of influenza vaccines. Lancet Infectious Diseases, The, 2012, 12, 656.	9.1	0
27	Matrigel, but not collagen I, maintains the differentiation capacity of muscle derived cells <i>in vitro</i> . Biomedical Materials (Bristol), 2012, 7, 055004.	3.3	68
28	Antibodies and carbohydrate ligands binding to <scp>DCâ€SIGN</scp> differentially modulate receptor trafficking. European Journal of Immunology, 2012, 42, 1989-1998.	2.9	25
29	Humoral and cellular immune responses after influenza vaccination in patients with chronic fatigue syndrome. BMC Immunology, 2012, 13, 71.	2.2	9
30	The chemotherapeutic drug oxaliplatin differentially affects blood DC function dependent on environmental cues. Cancer Immunology, Immunotherapy, 2012, 61, 1101-1111.	4.2	41
31	Harnessing human plasmacytoid dendritic cells as professional APCs. Cancer Immunology, Immunotherapy, 2012, 61, 1279-1288.	4.2	53
32	Preferential recruitment of bone marrow-derived cells to rat palatal wounds but not to skin wounds. Archives of Oral Biology, 2012, 57, 102-108.	1.8	8
33	Comparison of antibodies and carbohydrates to target vaccines to human dendritic cells via DC-SIGN. Biomaterials, 2012, 33, 4229-4239.	11.4	71
34	Myogenic capacity of muscle progenitor cells from head and limb muscles. European Journal of Oral Sciences, 2012, 120, 38-45.	1.5	6
35	Cytokine analysis as a tool to understand tumour–host interaction in ovarian cancer. European Journal of Cancer, 2011, 47, 1883-1889.	2.8	46
36	Cytokine Profiles in Cyst Fluids From Ovarian Tumors Reflect Immunosuppressive State of the Tumor. International Journal of Gynecological Cancer, 2011, 21, 1241-1247.	2.5	14

#	Article	IF	CITATIONS
37	The recruitment of bone marrowâ€derived cells to skin wounds is independent of wound size. Wound Repair and Regeneration, 2011, 19, 260-267.	3.0	11
38	Prophylactic vaccines mimic synthetic CpG oligonucleotides in their ability to modulate immune responses. Molecular Immunology, 2011, 48, 810-817.	2.2	24
39	Wild-type and modified gp100 peptide-pulsed dendritic cell vaccination of advanced melanoma patients can lead to long-term clinical responses independent of the peptide used. Cancer Immunology, Immunotherapy, 2011, 60, 249-260.	4.2	68
40	IL-4 and IL-13 Alter Plasmacytoid Dendritic Cell Responsiveness to CpG DNA and Herpes Simplex Virus-1. Journal of Investigative Dermatology, 2011, 131, 900-906.	0.7	19
41	Cancer Patients Treated with Sunitinib or Sorafenib Have Sufficient Antibody and Cellular Immune Responses to Warrant Influenza Vaccination. Clinical Cancer Research, 2011, 17, 4541-4549.	7.0	28
42	Eradicating cancer cells: struggle with a chameleon. Oncotarget, 2011, 2, 99-101.	1.8	14
43	Model for Muscle Regeneration around Fibrotic Lesions in Recurrent Strain Injuries. Medicine and Science in Sports and Exercise, 2010, 42, 813-819.	0.4	8
44	Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. Journal of Controlled Release, 2010, 144, 118-126.	9.9	242
45	Ovarian cancer creates a suppressive microenvironment to escape immune elimination. Gynecologic Oncology, 2010, 117, 366-372.	1.4	134
46	Bone marrowâ€derived cells in palatal wound healing. Oral Diseases, 2010, 16, 788-794.	3.0	5
47	Skeletal muscle fibrosis: the effect of stromal-derived factor-1α-loaded collagen scaffolds. Regenerative Medicine, 2010, 5, 737-747.	1.7	22
48	Hematopoietic Stem Cells Are Coordinated by the Molecular Cues of the Endosteal Niche. Stem Cells and Development, 2010, 19, 1131-1141.	2.1	16
49	Functional Differences Between Mesenchymal Stem Cell Populations Are Reflected by Their Transcriptome. Stem Cells and Development, 2010, 19, 481-490.	2.1	124
50	Expression Compilation of Several Putative Cancer Stem Cell Markers by Primary Ovarian Carcinoma. Journal of Cancer Therapy, 2010, 01, 165-173.	0.4	8
51	The Tetraspanin Protein CD37 Regulates IgA Responses and Anti-Fungal Immunity. PLoS Pathogens, 2009, 5, e1000338.	4.7	73
52	Toll-like receptor triggering in cord blood mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 2009, 13, 3415-3426.	3.6	49
53	Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukinâ€12 production by mature dendritic cells. Immunology, 2009, 128, 564-572.	4.4	23
54	A functional model for adult stem cells in epithelial tissues. Wound Repair and Regeneration, 2009, 17, 296-305.	3.0	24

#	Article	IF	CITATIONS
55	<i>In Vivo</i> Recruitment of Hematopoietic Cells Using Stromal Cell–Derived Factor 1 Alpha–Loaded Heparinized Three-Dimensional Collagen Scaffolds. Tissue Engineering - Part A, 2009, 15, 1591-1599.	3.1	39
56	Biological Mechanisms in Palatogenesis and Cleft Palate. Journal of Dental Research, 2009, 88, 22-33.	5.2	147
57	Mesenchymal stem cells respond to TNF but do not produce TNF. Journal of Leukocyte Biology, 2009, 87, 283-289.	3.3	46
58	Mesenchymal stromal cells: tissue engineers and immune response modulators. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 325-329.	2.3	7
59	Intratumoral rhILâ€12 administration in head and neck squamous cell carcinoma patients induces B cell activation. International Journal of Cancer, 2008, 123, 2354-2361.	5.1	76
60	Interaction of acute lymphopblastic leukemia cells with C-type lectins DC-SIGN and L-SIGN. Experimental Hematology, 2008, 36, 860-870.	0.4	12
61	Monocyte Cell Surface Glycosaminoglycans Positively Modulate IL-4-Induced Differentiation toward Dendritic Cells. Journal of Immunology, 2008, 180, 3680-3688.	0.8	49
62	Dendritic Cell Interaction with Candida albicans Critically Depends on N-Linked Mannan. Journal of Biological Chemistry, 2008, 283, 20590-20599.	3.4	209
63	No Advantage of Cell-Penetrating Peptides over Receptor-Specific Antibodies in Targeting Antigen to Human Dendritic Cells for Cross-Presentation. Journal of Immunology, 2008, 180, 7687-7696.	0.8	40
64	Distinct kinetic and mechanical properties govern ALCAM-mediated interactions as shown by single-molecule force spectroscopy. Journal of Cell Science, 2007, 120, 3965-3976.	2.0	38
65	Relevance of DC-SIGN in DC-induced T cell proliferation. Journal of Leukocyte Biology, 2007, 81, 729-740.	3.3	24
66	In Vivo Targeting of Antigens to Human Dendritic Cells Through DC-SIGN Elicits Stimulatory Immune Responses and Inhibits Tumor Growth in Grafted Mouse Models. Journal of Immunotherapy, 2007, 30, 715-726.	2.4	79
67	In Vivo Targeting of DC-SIGN-positive Antigen-presenting Cells in a Nonhuman Primate Model. Journal of Immunotherapy, 2007, 30, 705-714.	2.4	31
68	Binding of the adhesion and pathogen receptor DC-SIGN by monocytes is regulated by the density of Lewis X molecules. Molecular Immunology, 2007, 44, 2481-2486.	2.2	4
69	Skeletal Muscle Development and Regeneration. Stem Cells and Development, 2007, 16, 857-868.	2.1	126
70	Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nature Reviews Immunology, 2007, 7, 790-802.	22.7	678
71	Spatially Separated Distribution and Highly Flexible Expression of Adhesion Molecules Facilitates Dynamic Hematopoiesis. Journal of Medical Sciences (Faisalabad, Pakistan), 2007, 7, 1239-1249.	0.0	0
72	Targeting antigens to dendritic cells in vivo. Immunobiology, 2006, 211, 599-608.	1.9	112

#	Article	IF	CITATIONS
73	Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells. Blood, 2006, 107, 3212-3220.	1.4	185
74	In vitro migration and adhesion of fibroblasts from different phases of palatal wound healing. Wound Repair and Regeneration, 2006, 14, 66-71.	3.0	13
75	Case Report: Avoidance of Palpable Corporal Fibrosis Due to Priapism with Upregulators of Nitric Oxide. Journal of Sexual Medicine, 2006, 3, 173-176.	0.6	29
76	C-Type Lectins on Dendritic Cells and Their Interaction with Pathogen-Derived and Endogenous Glycoconjugates. Current Protein and Peptide Science, 2006, 7, 283-294.	1.4	22
77	Internalizing Antibodies to the C-Type Lectins, L-SIGN and DC-SIGN, Inhibit Viral Glycoprotein Binding and Deliver Antigen to Human Dendritic Cells for the Induction of T Cell Responses. Journal of Immunology, 2006, 176, 426-440.	0.8	51
78	Organization of the Integrin LFA-1 in Nanoclusters Regulates Its Activity. Molecular Biology of the Cell, 2006, 17, 4270-4281.	2.1	118
79	Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. Journal of Clinical Investigation, 2006, 116, 1642-1650.	8.2	632
80	Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti–DC-SIGN antibody. Blood, 2005, 106, 1278-1285.	1.4	265
81	Dynamic protein expression patterns during intraoral wound healing in the rat. European Journal of Oral Sciences, 2005, 113, 153-158.	1.5	8
82	Report on antibodies submitted to the stromal cell section of HLDA8. Cellular Immunology, 2005, 236, 29-41.	3.0	10
83	Myofibroblasts in Palatal Wound Healing: Prospects for the Reduction of Wound Contraction after Cleft Palate Repair. Journal of Dental Research, 2005, 84, 871-880.	5.2	69
84	Novel monoclonal antibodies detect elevated levels of the chemokine CCL18/DC-CK1 in serum and body fluids in pathological conditions. Journal of Leukocyte Biology, 2005, 77, 739-747.	3.3	16
85	Blood vessels engineered from human cells. Lancet, The, 2005, 366, 892.	13.7	5
86	Increased FcÂRII expression and aberrant tumour necrosis factor production by mature dendritic cells from patients with active rheumatoid arthritis. Annals of the Rheumatic Diseases, 2004, 63, 1556-1563.	0.9	43
87	Differentiating Stem Cells Mask Their Origins. Stem Cells, 2004, 22, 250-252.	3.2	5
88	Human dendritic cells are less potent at killing Candida albicans than both monocytes and macrophages. Microbes and Infection, 2004, 6, 985-989.	1.9	53
89	An automated multi well cell track system to study leukocyte migration. Journal of Immunological Methods, 2003, 280, 89-102.	1.4	24
90	The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. European Journal of Immunology, 2003, 33, 532-538.	2.9	336

#	Article	IF	CITATIONS
91	Expression of the dendritic cell-associated C-type lectin DC-SIGN by inflammatory matrix metalloproteinase-producing macrophages in rheumatoid arthritis synovium and interaction with intercellular adhesion molecule 3-positive T cells. Arthritis and Rheumatism, 2003, 48, 360-369.	6.7	43
92	Analysis of dendritic cell trafficking using EGFP-transgenic mice. Immunology Letters, 2003, 89, 17-24.	2.5	43
93	Ceramic hydroxyapatite coating on titanium implants drives selective bone marrow stromal cell adhesion. Clinical Oral Implants Research, 2003, 14, 569-577.	4.5	11
94	Fibroblast subpopulations in intra-oral wound healing. Wound Repair and Regeneration, 2003, 11, 55-63.	3.0	21
95	Modulation of Integrin Expression on Rat Bone Marrow Cells by Substrates with Different Surface Characteristics. Tissue Engineering, 2002, 8, 615-626.	4.6	37
96	The Achilles' heel of HIV. Medical Hypotheses, 2002, 58, 386-387.	1.5	5
97	Analysis of Integrin Expression in U2OS Cells Cultured on Various Calcium Phosphate Ceramic Substrates. Tissue Engineering, 2001, 7, 279-289.	4.6	29
98	Molecular Basis for the Homophilic Activated Leukocyte Cell Adhesion Molecule (ALCAM)-ALCAM Interaction. Journal of Biological Chemistry, 2001, 276, 25783-25790.	3.4	137
99	Regulation of LFA-1 Expression by CD34 Positive Cells and Inducible Growth Factor Production by Stroma Enable Formation of Bone Marrow Compartments. Hematology, 2000, 5, 295-302.	1.5	2
100	Molecular analysis of the hematopoiesis supporting osteoblastic cell line U2-OS. Experimental Hematology, 2000, 28, 422-432.	0.4	67
101	Identification of DC-SIGN, a Novel Dendritic Cell–Specific ICAM-3 Receptor that Supports Primary Immune Responses. Cell, 2000, 100, 575-585.	28.9	1,558
102	DC-SIGN, a Dendritic Cell–Specific HIV-1-Binding Protein that Enhances trans-Infection of T Cells. Cell, 2000, 100, 587-597.	28.9	2,214
103	Induction of LFA-1 on pluripotent CD34+ bone marrow cells does not affect lineage commitment. Blood, 1996, 87, 4120-4128.	1.4	31
104	Clinical significance of Clostridium difficile and its toxins in faeces of immunocompromised children Gut, 1994, 35, 1608-1612.	12.1	21
105	Reactivity of Monoclonal Antibodies to Pseudomonas aeruginosa Isolates from Hospitalized Adults and Patients with Cystic Fibrosis. Clinical Infectious Diseases, 1994, 19, 11-14.	5.8	2
106	Multivalent binding of toxin A from Clostridium difficile to carbohydrate receptors. Toxicon, 1994, 32, 129-132.	1.6	5
107	Rapid detection of toxigenic Clostridium difficile in fecal samples by magnetic immuno PCR assay. Journal of Clinical Microbiology, 1994, 32, 1629-1633.	3.9	48
108	Toxins A and B of Clostridium difficile. FEMS Microbiology Reviews, 1994, 13, 59-64.	8.6	0

#	Article	IF	CITATIONS
109	A flaw in the detection of antigenic sites. Trends in Immunology, 1993, 14, 370-371.	7.5	3
110	Comment to Knoop et al. (1990) FEBS Letters 267, 9-12, Toxin B ofClostridium difficiledoes not have enolase activity. FEBS Letters, 1993, 316, 103-104.	2.8	4
111	Comparison of immunomagnetic beads coated with protein A, protein G, or goat anti-mouse immunoglobulins Applications in enzyme immunoassays and immunomagnetic separations. Journal of Immunological Methods, 1993, 165, 11-19.	1.4	64
112	Protection against Lethal Endotoxemia by Monoclonal Antibodies. Journal of Infectious Diseases, 1993, 168, 1593-1593.	4.0	1
113	Detection of Listeria monocytogenes in cheese with the magnetic immuno-polymerase chain reaction assay. Applied and Environmental Microbiology, 1993, 59, 1289-1293.	3.1	132
114	Rapid detection of salmonellae in poultry with the magnetic immuno-polymerase chain reaction assay. Applied and Environmental Microbiology, 1993, 59, 1342-1346.	3.1	100
115	Monoclonal antibodies that react with live Listeria spp. Applied and Environmental Microbiology, 1993, 59, 2713-2716.	3.1	29
116	Escherichia coli in bacteremia: O-acetylated K1 strains appear to be more virulent than non-O-acetylated K1 strains. Journal of Clinical Microbiology, 1993, 31, 3174-3178.	3.9	29
117	Comparison of typing methods for Clostridium difficile isolates. Journal of Clinical Microbiology, 1993, 31, 2208-2211.	3.9	18
118	Monoclonal antibodies that identify gram-negative bacteria using the magnetic immunoluminescence assay. Journal of Microbiological Methods, 1992, 15, 135-142.	1.6	9
119	Monoclonal antibodies that detect live salmonellae. Applied and Environmental Microbiology, 1992, 58, 3868-3872.	3.1	22
120	The magnetic immuno polymerase chain reaction assay for direct detection of salmonellae in fecal samples. Journal of Clinical Microbiology, 1992, 30, 3195-3199.	3.9	216
121	Mechanism for monoclonal antibody mediated treatment of gram-negative shock. Lancet, The, 1991, 338, 186.	13.7	4
122	Evaluation of the Magnetic Immuno PCR assay for rapid detection ofSalmonella. European Journal of Clinical Microbiology and Infectious Diseases, 1991, 10, 935-938.	2.9	131
123	Immunization of Mice with Antibiotic-Treated Escherichia coli Results in Enhanced Protection against Challenge with Homologous and Heterologous Bacteria. Journal of Infectious Diseases, 1991, 163, 122-127.	4.0	15
124	Characterisation and functional aspects of monoclonal antibodies specific for surface proteins of coagulase-negative staphylococci. Journal of Medical Microbiology, 1991, 35, 65-71.	1.8	8
125	Nontoxigenic strains of Clostridium difficile lack the genes for both toxin A and toxin B. Journal of Clinical Microbiology, 1991, 29, 2666-2667.	3.9	52
126	Monoclonal antibodies specific for the phase-variant O-acetylated K1 capsule of Escherichia coli. Journal of Clinical Microbiology, 1991, 29, 1356-1358.	3.9	12

#	Article	IF	CITATIONS
127	Prospects for monoclonal antibodies in the diagnosis and treatment of bacterial infections. European Journal of Clinical Microbiology and Infectious Diseases, 1990, 9, 247-250.	2.9	1
128	Discrimination by rabbit anti-idiotypic antibodies of two murine IgM monoclonal antibodies directed against lipid A. Journal of Immunological Methods, 1990, 130, 141-147.	1.4	6
129	In vitro stimulation of immune spleen cells enhances the number of anti-lipid A-producing hybridomas. Journal of Immunological Methods, 1989, 118, 17-24.	1.4	4
130	Rapid immunodiagnosis of active cytomegalovirus infection by monoclonal antibody staining of blood leucocytes. Journal of Medical Virology, 1988, 25, 179-188.	5.0	420
131	Limiting HIV infectivity with peptides. Trends in Immunology, 1988, 9, 255-256.	7.5	Ο
132	Comparison between viremia and antigenemia for detection of cytomegalovirus in blood. Journal of Clinical Microbiology, 1988, 26, 2531-2535.	3.9	296
133	Lymphadenopathy Morphologically Consistent with Hodgkin's Disease Associated with Epstein-Barr Virus Infection. American Journal of Clinical Pathology, 1985, 84, 385-390.	0.7	72
134	The primary immune response in bronchial asthma *11. A kinetic study of helix pomatia hemocyanin-specific IgE, IgG, IgA, and IgM antibody responses in patients with asthma and in matched controls. Journal of Allergy and Clinical Immunology, 1985, 76, 29-34.	2.9	10
135	Oxygen binding and pH stability of tubular polymers from Helix pomatia .beta.c-hemocyanin. Biochemistry, 1983, 22, 4276-4280.	2.5	2
136	Oxygen binding by <i>Helix pomatia</i> α-haemocyanin studied by X-ray-absorption spectroscopy. Biochemical Journal, 1983, 209, 373-377.	3.7	2
137	A comparison of the copper sites in arthropod and mollusc oxyhemocyanins. FEBS Letters, 1981, 130, 314-316.	2.8	6
138	Reassembly of wall domains of Roman-snail (Helix pomatia) Î ² -haemocyanin. Biochemical Journal, 1981, 195, 119-122.	3.7	4
139	Structural and functional aspects of collar domains of Helix pomatia βc-Hemocyanin. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1981, 668, 268-276.	1.7	7
140	Functional properties of the isolated domains of Helix pomatia βc -hemocyanin. FEBS Letters, 1980, 115, 213-215.	2.8	12
141	Binding of Carbon Monoxide to alpha-Hemocyanin and beta-Hemocyanin from Helix pomatia. FEBS Journal, 1976, 68, 425-430.	0.2	17