Pinak Chakrabarti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2660540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	O‧‧Câ•O interaction, its occurrence and implications for protein structure and folding. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1159-1169.	2.6	4
2	Intrinsically disordered proteins/regions and insight into their biomolecular interactions. Biophysical Chemistry, 2022, 283, 106769.	2.8	28
3	Virstatin-Conjugated Gold Nanoparticle with Enhanced Antimicrobial Activity against the <i>Vibrio cholerae</i> El Tor Biotype. ACS Applied Bio Materials, 2021, 4, 3089-3100.	4.6	13
4	RGS5–TGFβ–Smad2/3 axis switches pro- to anti-apoptotic signaling in tumor-residing pericytes, assisting tumor growth. Cell Death and Differentiation, 2021, 28, 3052-3076.	11.2	21
5	Effect of gold nanoparticles on the structure and neuroprotective function of protein L-isoaspartyl methyltransferase (PIMT). Scientific Reports, 2021, 11, 14296.	3.3	9
6	The gold nanoparticle reduces Vibrio cholerae pathogenesis by inhibition of biofilm formation and disruption of the production and structure of cholera toxin. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111811.	5.0	13
7	Inhibition of microtubule assembly and cytotoxic effect of graphene oxide on human colorectal carcinoma cell HCT116. Archives of Biochemistry and Biophysics, 2021, 708, 108940.	3.0	12
8	Delineation of a new structural motif involving NHN γâ€ŧurn. Proteins: Structure, Function and Bioinformatics, 2020, 88, 431-439.	2.6	3
9	The role of isoaspartate in fibrillation and its prevention by Protein-L-isoaspartyl methyltransferase. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129500.	2.4	16
10	The susceptibility of disulfide bonds towards radiation damage may be explained by SO interactions. IUCrJ, 2020, 7, 825-834.	2.2	9
11	Differential processing of quorum sensing signals through phosphotransfer: structural insights from molecular dynamics simulations. Journal of Proteins and Proteomics, 2019, 10, 91-108.	1.5	0
12	The antibacterial and anticancer properties of zinc oxide coated iron oxide nanotextured composites. Colloids and Surfaces B: Biointerfaces, 2019, 177, 512-519.	5.0	43
13	Self-Assembly of Ferritin: Structure, Biological Function and Potential Applications in Nanotechnology. Advances in Experimental Medicine and Biology, 2019, 1174, 313-329.	1.6	23
14	Structural changes in DNA-binding proteins on complexation. Nucleic Acids Research, 2018, 46, 3298-3308.	14.5	11
15	Molecular features of interaction involving hen egg white lysozyme immobilized on graphene oxide and the effect on activity. International Journal of Biological Macromolecules, 2018, 120, 2390-2398.	7.5	14
16	Structural motif, topi and its role in protein function and fibrillation. Molecular Omics, 2018, 14, 247-256.	2.8	5
17	Structure and function of Vibrio cholerae accessory cholera enterotoxin in presence of gold nanoparticles: Dependence on morphology. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 977-986.	2.4	18
18	PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2. Free Radical Biology and Medicine. 2017. 103. 35-47.	2.9	61

#	Article	IF	CITATIONS
19	Zinc oxide nanoparticles provide anti-cholera activity by disrupting the interaction of cholera toxin with the human GM1 receptor. Journal of Biological Chemistry, 2017, 292, 18303-18311.	3.4	23
20	Modelling of growth kinetics of Vibrio cholerae in presence of gold nanoparticles: effect of size and morphology. Scientific Reports, 2017, 7, 9671.	3.3	20
21	A novel secondary structure based on fused five-membered rings motif. Scientific Reports, 2016, 6, 31483.	3.3	7
22	Tumorâ€associated mesenchymal stem cells inhibit naÃ`ve T cell expansion by blocking cysteine export from dendritic cells. International Journal of Cancer, 2016, 139, 2068-2081.	5.1	37
23	Anoctamin 6 Contributes to Clâ^' Secretion in Accessory Cholera Enterotoxin (Ace)-stimulated Diarrhea. Journal of Biological Chemistry, 2016, 291, 26816-26836.	3.4	25
24	The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae : Variation in response depends on biotype. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1499-1509.	3.3	87
25	Effects of Small Molecule Calcium-Activated Chloride Channel Inhibitors on Structure and Function of Accessory Cholera Enterotoxin (Ace) of Vibrio cholerae. PLoS ONE, 2015, 10, e0141283.	2.5	5
26	Defining the loop structures in proteins based on composite Î ² -turn mimics. Protein Engineering, Design and Selection, 2015, 28, 153-161.	2.1	17
27	Identification of the target DNA sequence and characterization of DNA binding features of HlyU, and suggestion of a redox switch for hlyA expression in the human pathogen Vibrio cholerae from in silico studies. Nucleic Acids Research, 2015, 43, 1407-1417.	14.5	16
28	Flexibility in the Nâ€ŧerminal actinâ€binding domain: Clues from <i>in silico</i> mutations and molecular dynamics. Proteins: Structure, Function and Bioinformatics, 2015, 83, 696-710.	2.6	7
29	ωâ€Turn: A novel βâ€ŧurn mimic in globular proteins stabilized by mainâ€chain to sideâ€chain CH···O interaction. Proteins: Structure, Function and Bioinformatics, 2015, 83, 203-214.	2.6	7
30	Changes in protein structure at the interface accompanying complex formation. IUCrJ, 2015, 2, 643-652.	2.2	21
31	Crystal structure and activity of protein L-isoaspartyl-O-methyltransferase from Vibrio cholerae, and the effect of AdoHcy binding. Archives of Biochemistry and Biophysics, 2015, 583, 140-149.	3.0	10
32	Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 299-306.	2.4	132
33	Water and sideâ€chain embedded Ï€â€ŧurns. Biopolymers, 2014, 101, 441-453.	2.4	6
34	Crystal structure of HlyU, the hemolysin gene transcription activator, from Vibrio cholerae N16961 and functional implications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 2346-2354.	2.3	15
35	CH–π hydrogen bonds in biological macromolecules. Physical Chemistry Chemical Physics, 2014, 16, 12648-12683.	2.8	392
36	Bactericidal effect of polyethyleneimine capped ZnO nanoparticles on multiple antibiotic resistant bacteria harboring genes of high-pathogenicity island. Colloids and Surfaces B: Biointerfaces, 2014, 121, 44-53.	5.0	45

#	Article	IF	CITATIONS
37	Reassessing buried surface areas in protein–protein complexes. Protein Science, 2013, 22, 1453-1457.	7.6	27
38	Protein l-isoaspartyl-O-methyltransferase of Vibrio cholerae: Interaction with cofactors and effect of osmolytes on unfolding. Biochimie, 2013, 95, 912-921.	2.6	7
39	The Molecular Basis of Inactivation of Metronidazole-Resistant Helicobacter pylori Using Polyethyleneimine Functionalized Zinc Oxide Nanoparticles. PLoS ONE, 2013, 8, e70776.	2.5	39
40	Interaction of Polyethyleneimine-Functionalized ZnO Nanoparticles with Bovine Serum Albumin. Langmuir, 2012, 28, 11142-11152.	3.5	132
41	ZnO Nanoparticles as an Antibacterial Agent Against <i>E. coli</i> . Science of Advanced Materials, 2012, 4, 173-178.	0.7	15
42	Contrasting Effect of Gold Nanoparticles and Nanorods with Different Surface Modifications on the Structure and Activity of Bovine Serum Albumin. Langmuir, 2011, 27, 7722-7731.	3.5	192
43	Polyethyleneimine Functionalized ZnO Quantum Dots and their Binding Interaction with Bovine Serum Albumin Protein. Materials Research Society Symposia Proceedings, 2011, 1316, 1.	0.1	Ο
44	Accessory Cholera Enterotoxin, Ace, from <i>Vibrio cholerae</i> : Structure, Unfolding, and Virstatin Binding. Biochemistry, 2011, 50, 2962-2972.	2.5	25
45	Anti-Tumor Chloroquine-Gold Nanocomposites and their Binding Interaction with Bovine Serum Albumin: Biophysical and Biochemical Aspects of Protein Binding. Materials Research Society Symposia Proceedings, 2011, 1316, 1.	0.1	Ο
46	The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the <i>Vibrio cholerae</i> ToxR protein. FEBS Journal, 2010, 277, 4184-4194.	4.7	69
47	Structure and Activity of Lysozyme on Binding to ZnO Nanoparticles. Langmuir, 2010, 26, 3506-3513.	3.5	156
48	The Subunit Interfaces of Weakly Associated Homodimeric Proteins. Journal of Molecular Biology, 2010, 398, 146-160.	4.2	107
49	Role of Surface Adsorbed Anionic Species in Antibacterial Activity of ZnO Quantum Dots Against <i>Escherichia coli</i> . Journal of Nanoscience and Nanotechnology, 2009, 9, 6427-6433.	0.9	68
50	pi-Turns: types, systematics and the context of their occurrence in protein structures. BMC Structural Biology, 2008, 8, 39.	2.3	19
51	Protein–protein interaction and quaternary structure. Quarterly Reviews of Biophysics, 2008, 41, 133-180.	5.7	354
52	Structural studies on Vibrio cholerae ToxR periplasmic and cytoplasmic domains. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1331-1338.	2.3	4
53	Geometry of nonbonded interactions involving planar groups in proteins. Progress in Biophysics and Molecular Biology, 2007, 95, 83-137.	2.9	171
54	Peptide segments in protein-protein interfaces. Journal of Biosciences, 2007, 32, 101-111.	1.1	37

#	Article	IF	CITATIONS
55	Cloning, expression, purification, and characterization of Vibrio cholerae transcriptional activator, HlyU. Protein Expression and Purification, 2006, 48, 118-125.	1.3	11
56	ProFace: a server for the analysis of the physicochemical features of protein-protein interfaces. BMC Structural Biology, 2006, 6, 11.	2.3	73
57	Molecular modeling and characterization of Vibrio cholerae transcription regulator HlyU. BMC Structural Biology, 2006, 6, 24.	2.3	26
58	310-Helix adjoining α-helix and β-strand: Sequence and structural features and their conservation. Biopolymers, 2005, 78, 147-162.	2.4	25
59	Interresidue Contacts in Proteins and Proteinâ^'Protein Interfaces and Their Use in Characterizing the Homodimeric Interface. Journal of Proteome Research, 2005, 4, 1600-1609.	3.7	42
60	Disulfide bonds, their stereospecific environment and conservation in protein structures. Protein Engineering, Design and Selection, 2004, 17, 795-808.	2.1	109
61	Expanded turn conformations: Characterization and sequence-structure correspondence in α-turns with implications in helix folding. Proteins: Structure, Function and Bioinformatics, 2004, 55, 305-315.	2.6	39
62	A Dissection of Specific and Non-specific Protein–Protein Interfaces. Journal of Molecular Biology, 2004, 336, 943-955.	4.2	426
63	Sequence and Structure Patterns in Proteins from an Analysis of the Shortest Helices: Implications for Helix Nucleation. Journal of Molecular Biology, 2003, 326, 273-291.	4.2	71
64	Stereospecific Interactions of Proline Residues in Protein Structures and Complexes. Journal of Molecular Biology, 2003, 331, 925-940.	4.2	162
65	Silver(i) oxide–silver halide mediated alcoholysis of O-benzoyl-myo-inositol 1,3,5-orthoformates: intramolecular assistance by the sulfonyl group. Perkin Transactions II RSC, 2002, , 358-365.	1.1	9
66	Dissecting protein-protein recognition sites. Proteins: Structure, Function and Bioinformatics, 2002, 47, 334-343.	2.6	549
67	Variants of 310-helices in proteins. Proteins: Structure, Function and Bioinformatics, 2002, 48, 571-579.	2.6	42
68	Non-hydrogen Bond Interactions Involving the Methionine Sulfur Atom. Journal of Biomolecular Structure and Dynamics, 2001, 19, 115-128.	3.5	160
69	The interrelationships of side-chain and main-chain conformations in proteins. Progress in Biophysics and Molecular Biology, 2001, 76, 1-102.	2.9	189
70	Terminal residues in protein chains: Residue preference, conformation, and interaction. Biopolymers, 2000, 53, 467-475.	2.4	13
71	Environment of tryptophan side chains in proteins. Proteins: Structure, Function and Bioinformatics, 2000, 38, 288-300.	2.6	133
72	Conformational Similarity Indices Between Different Residues in Proteins and α-Helix Propensities. Journal of Biomolecular Structure and Dynamics, 2000, 18, 273-280.	3.5	10

#	Article	IF	CITATIONS
73	Environment of tryptophan side chains in proteins. Proteins: Structure, Function and Bioinformatics, 2000, 38, 288-300.	2.6	1
74	Estimates of the loss of main-chain conformational entropy of different residues on protein folding. , 1999, 36, 332-339.		21
75	Cis peptide bonds in proteins: residues involved, their conformations, interactions and locations 1 1Edited by J. M. Thornton. Journal of Molecular Biology, 1999, 294, 271-288.	4.2	294
76	Different Types of Interactions Involving Cysteine Sulfhydryl Group in Proteins. Journal of Biomolecular Structure and Dynamics, 1998, 15, 1059-1072.	3.5	83
77	An electrophileâ€nucleophile interaction in metalloprotein structures. Protein Science, 1997, 6, 851-859.	7.6	17
78	Stereodivergent Câ^'C Bond Formation on Areneâ^'Chromium Template:ÂEndo-Selective Allylation by Hosomiâ^'Sakurai Reactionâ€. Journal of Organic Chemistry, 1996, 61, 8362-8363.	3.2	23