
Xufeng Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/266007/publications.pdf Version: 2024-02-01

XUFENC DONC

#	Article	IF	CITATIONS
1	Mechanical properties of a novel buckling restrained shear panel damper with octagon restraining plates. Earthquake Engineering and Structural Dynamics, 2022, 51, 259-276.	4.4	6
2	PVP-grafted synthesis for uniform electrospinning silica@carbon nanofibers as flexible free-standing anode for Li-ion batteries. Solid State Ionics, 2022, 374, 115817.	2.7	10
3	Influence of chain-like cobalt particles on the properties of magnetorheological elastomers. Smart Materials and Structures, 2022, 31, 035007.	3.5	3
4	Pt Concave Nanocubes with High-Index Facets as Electrocatalysts for Glucose Oxidation. ACS Applied Nano Materials, 2022, 5, 4983-4990.	5.0	12
5	Molecular Dynamics Simulations and Experimental Studies of the Microstructure and Mechanical Properties of a Silicone Oil/Functionalized Ionic Liquid-Based Magnetorheological Fluid. ACS Applied Materials & Interfaces, 2022, 14, 10987-10997.	8.0	8
6	A Stiffness Tunable Self-Healing Composite Comprising PDMS and Titanium Dioxide. ACS Applied Polymer Materials, 2022, 4, 2656-2663.	4.4	5
7	Electrospun layers by layers orderly stacked SnO2@aligned carbon nanofibers as high conductivity, long cycle life self-standing anode for reversible lithium ions batteries. Surfaces and Interfaces, 2022, 29, 101814.	3.0	5
8	Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioactive Materials, 2022, 18, 26-41.	15.6	66
9	The porous spongy nest structure compressible anode fabricated by gas forming technique toward high performance lithium ions batteries. Journal of Colloid and Interface Science, 2022, , .	9.4	3
10	Enhanced magnetorheological effect and sedimentation stability of bimodal magnetorheological fluids doped with iron nanoparticles. Journal of Intelligent Material Systems and Structures, 2021, 32, 1271-1277.	2.5	15
11	Effect of electric field on storage modulus of dielectric composites. Journal of Applied Polymer Science, 2021, 138, 50031.	2.6	3
12	Self-assembled 0D/2D nano carbon materials engineered smart and multifunctional cement-based composites. Construction and Building Materials, 2021, 272, 121632.	7.2	33
13	Effect of pore orientation on shear viscoelasticity of cellulose nanocrystal/collagen hydrogels. Journal of Applied Polymer Science, 2021, 138, 49856.	2.6	2
14	Improved Magnetorheological Properties by Using Ionic Liquid as Carrier Liquid of Magnetorheological Fluids. Frontiers in Materials, 2021, 8, .	2.4	18
15	Shear viscoelasticity of electrospinning PCL nanofibers reinforced alginate hydrogels. Materials Research Express, 2021, 8, 055402.	1.6	6
16	lonic liquid assisted electrospinning synthesis for ultra-uniform Sn@ mesoporous carbon nanofibers as a flexible self-standing anode for lithium ion batteries. Journal of Alloys and Compounds, 2021, 866, 158984.	5.5	15
17	Effect of the interface between magnetic particles and carrier liquids on magnetorheological properties and sedimentation of magnetorheological fluids: A molecular dynamics simulation and experimental insights. Journal of Molecular Liquids, 2021, 342, 117377.	4.9	10
18	A structure evolution mechanism for the modulus loss in electromechanical response of carbon nanotube fiber. Carbon, 2021, 185, 289-299.	10.3	3

#	Article	IF	CITATIONS
19	Nitrogen-doped TiO2 nanotube anode enabling improvement of electronic conductivity for fast and long-term sodium storage. Journal of Alloys and Compounds, 2021, 889, 161612.	5.5	14
20	Modified Bouc-Wen Model Based on Fractional Derivative and Application in Magnetorheological Elastomer. Frontiers in Materials, 2021, 8, .	2.4	1
21	Fracture and self-sensing characteristics of super-fine stainless wire reinforced reactive powder concrete. Cement and Concrete Composites, 2020, 105, 103427.	10.7	32
22	Dynamic viscoelasticity and magnetorheological property of magnetic hydrogels. Journal of Magnetism and Magnetic Materials, 2020, 498, 166140.	2.3	10
23	Improved distribution homogeneity of carbonyl iron particles in magnetorheological elastomers by adding zinc dimethacrylate. Smart Materials and Structures, 2020, 29, 025021.	3.5	9
24	Electromagnetic wave shielding/absorption performances of cementitious composites incorporating carbon nanotube metamaterial with helical chirality. Journal of Composite Materials, 2020, 54, 3857-3870.	2.4	9
25	Ionic Liquidâ€Assisted Anchoring SnO 2 Nanoparticles on Carbon Nanotubes as Highly Cyclable Anode of Lithium Ion Batteries. Advanced Materials Interfaces, 2020, 7, 1901916.	3.7	17
26	Cellulose nanocrystal/collagen hydrogels reinforced by anisotropic structure: Shear viscoelasticity and related strengthening mechanism. Composites Communications, 2020, 21, 100374.	6.3	22
27	High capacitive sodium-ion storage in N, P co-doped carbon supported on carbon nanotubes. Journal of Electroanalytical Chemistry, 2020, 870, 114200.	3.8	10
28	In-built durable Li–S counterparts from Li–TiS2 batteries. Materials Today Energy, 2020, 17, 100439.	4.7	8
29	Creep and recovery behaviors of electrorheological elastomers and time-electric field superposition principle. Smart Materials and Structures, 2020, 29, 025009.	3.5	4
30	Tailoring sensing properties of smart cementitious composites based on excluded volume theory and electrostatic self-assembly. Construction and Building Materials, 2020, 256, 119452.	7.2	17
31	Properties and mechanical model of a stiffness tunable viscoelastic damper based on electrorheological elastomers. Smart Materials and Structures, 2020, 29, 045041.	3.5	17
32	Wind-induced vibration control of a constructing bridge tower with MRE variable stiffness tuned mass damper. Smart Materials and Structures, 2020, 29, 045034.	3.5	15
33	Lithium-ion storage in molybdenum phosphides with different crystal structures. Dalton Transactions, 2020, 49, 2225-2233.	3.3	12
34	Rich nitrogen-doped carbon on carbon nanotubes for high-performance sodium-ion supercapacitors. Journal of Power Sources, 2020, 459, 228104.	7.8	23
35	From the perspective of material science: a review of flexible electrodes for brain-computer interface. Materials Research Express, 2020, 7, 102001.	1.6	13
36	Iron nanoparticles-based magnetorheological fluids: A balance between MR effect and sedimentation stability. Journal of Magnetism and Magnetic Materials, 2019, 491, 165556.	2.3	49

#	Article	IF	CITATIONS
37	Facile synthesis of hierarchically structured flower-like Fe3O4 microspheres for high-performance magnetorheological fluids. Journal of Industrial and Engineering Chemistry, 2019, 79, 217-225.	5.8	40
38	Payne effect and damping properties of flower-like cobalt particles-based magnetorheological elastomers. Composites Communications, 2019, 15, 120-128.	6.3	23
39	Preparation and viscoelasticity of anisotropic polyurethane composites filled with TiO ₂ particles. Journal of Applied Polymer Science, 2019, 136, 47450.	2.6	2
40	An anisotropic three-dimensional electrospun micro/nanofibrous hybrid PLA/PCL scaffold. RSC Advances, 2019, 9, 9838-9844.	3.6	11
41	Introductory Chapter: The Way to Fulfill Science Fiction. , 2019, , .		0
42	A Two-Dimensional Axisymmetric Finite Element Analysis of Coupled Inertial-Viscous-Frictional-Elastic Transients in Magnetorheological Dampers Using the Compressible Herschel-Bulkley Fluid Model. Frontiers in Materials, 2019, 6, .	2.4	8
43	Effect Investigation of Nanofillers on C-S-H Gel Structure with Si NMR. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	58
44	Controlled synthesis of CoFe2O4/MoS2 nanocomposites with excellent sedimentation stability for magnetorheological fluid. Journal of Industrial and Engineering Chemistry, 2019, 70, 439-446.	5.8	31
45	Uniformly Grafting SnO ₂ Nanoparticles on Ionic Liquid Reduced Graphene Oxide Sheets for High Lithium Storage. Advanced Materials Interfaces, 2018, 5, 1701685.	3.7	16
46	Mechanical modeling for magnetorheological elastomer isolators based on constitutive equations and electromagnetic analysis. Smart Materials and Structures, 2018, 27, 065017.	3.5	13
47	Improved tunable range of the field-induced storage modulus by using flower-like particles as the active phase of magnetorheological elastomers. Soft Matter, 2018, 14, 3504-3509.	2.7	53
48	Two-dimensional Fe ₃ O ₄ /MoS ₂ nanocomposites for a magnetorheological fluid with enhanced sedimentation stability. Soft Matter, 2018, 14, 1917-1924.	2.7	27
49	Development of manganese ferrite/graphene oxide nanocomposites for magnetorheological fluid with enhanced sedimentation stability. Journal of Industrial and Engineering Chemistry, 2017, 48, 142-150.	5.8	88
50	High performance magnetorheological fluids with flower-like cobalt particles. Smart Materials and Structures, 2017, 26, 025023.	3.5	45
51	Pressure-sensitive behaviors, mechanisms and model of field assisted quantum tunneling composites. Polymer, 2017, 113, 105-118.	3.8	34
52	Solvothermal synthesis, characterization, and magnetorheological study of zinc ferrite nanocrystal clusters. Journal of Intelligent Material Systems and Structures, 2017, 28, 2331-2338.	2.5	37
53	A nonlinear model of magnetorheological elastomer with wide amplitude range and variable frequencies. Smart Materials and Structures, 2017, 26, 065010.	3.5	19
54	Magnesium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability. Solid State Sciences, 2017, 63, 70-75.	3.2	18

#	Article	IF	CITATIONS
55	Electrorheological properties of carbon nanotube decorated TiO2 nanoparticles. Materials Research Express, 2017, 4, 065701.	1.6	6
56	Effect of nano-titanium dioxide on mechanical and electrical properties and microstructure of reactive powder concrete. Materials Research Express, 2017, 4, 095008.	1.6	76
57	Synthesis of calcium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability. Powder Technology, 2017, 322, 47-53.	4.2	41
58	Self-damping cementitious composites with multi-layer graphene. Materials Research Express, 2017, 4, 075605.	1.6	12
59	Dynamic viscoelasticity and phenomenological model of electrorheological elastomers. Journal of Applied Polymer Science, 2017, 134, 45407.	2.6	12
60	Study on an improved variable stiffness tuned mass damper based on conical magnetorheological elastomer isolators. Smart Materials and Structures, 2017, 26, 105028.	3.5	23
61	A facile electrostatic spraying method to prepare polyvinylpyrrolidone modified TiO ₂ particles with improved electrorheological effect. Soft Materials, 2017, 15, 315-324.	1.7	4
62	Effect of carrier liquid on electrorheological performance and stability of oxalate group-modified TiO2 suspensions. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 854-861.	1.0	9
63	Damping mechanism and theoretical model of electrorheological elastomers. Soft Matter, 2017, 13, 5409-5420.	2.7	13
64	Comparison of electrorheological performance between urea-coated and graphene oxide-wrapped core-shell structured amorphous TiO ₂ nanoparticles. Smart Materials and Structures, 2016, 25, 015033.	3.5	9
65	Synthesis, characterization and magnetorheological study of 3-aminopropyltriethoxysilane-modified Fe ₃ O ₄ nanoparticles. Smart Materials and Structures, 2016, 25, 035028.	3.5	38
66	Enhancement of electrorheological performance of electrorheological elastomers by improving TiO ₂ particles/silicon rubber interface. Journal of Materials Chemistry C, 2016, 4, 6806-6815.	5.5	34
67	Quantum Tunneling Composites and Detectors for Intelligent Transportation Systems. , 2015, , .		1
68	Properties of cobalt nanofiber-based magnetorheological fluids. RSC Advances, 2015, 5, 13958-13963.	3.6	23
69	Diammonium phosphate modified titanium dioxide suspensions with improved ER efficiency. Smart Materials and Structures, 2015, 24, 065009.	3.5	0
70	Facile synthesis and magnetorheological properties of superparamagnetic CoFe2O4/GO nanocomposites. Applied Surface Science, 2015, 357, 2131-2135.	6.1	29
71	The contribution of friction to electrorheological properties of a chrysanthemum-like particle suspension. RSC Advances, 2015, 5, 74656-74663.	3.6	9
72	Enhanced Electrorheological Properties of Elastomers Containing TiO ₂ /Urea Core–Shell Particles. ACS Applied Materials & Interfaces, 2015, 7, 24855-24863.	8.0	53

#	Article	IF	CITATIONS
73	Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality. Composites Part A: Applied Science and Manufacturing, 2015, 79, 103-115.	7.6	142
74	Titanium glycerolate-based electrorheological fluids with stable properties. Materials Research Express, 2014, 1, 025709.	1.6	4
75	Solvothermal synthesis of single-crystalline hexagonal cobalt nanofibers with high coercivity. Materials Letters, 2014, 128, 39-41.	2.6	12
76	Properties of aniline-modified strontium titanyl oxalate-based electrorheological suspension. Smart Materials and Structures, 2014, 23, 075018.	3.5	9
77	Facile preparation of poly(ε-caprolactone)/Fe3O4@graphene oxide superparamagnetic nanocomposites. Polymer Bulletin, 2013, 70, 2359-2371.	3.3	32
78	Multifunctional Fe3O4/graphene oxide nanocomposites for magnetic resonance imaging and drug delivery. Materials Chemistry and Physics, 2013, 141, 997-1004.	4.0	125
79	Preparation and characterization of PVPI-coated Fe3O4 nanoparticles as an MRI contrast agent. Journal of Magnetism and Magnetic Materials, 2013, 340, 57-60.	2.3	27
80	Influence of viscosity of carrier liquid on performance of electrorheological fluids. , 2013, , .		0
81	The pressure-dependent MR effect of magnetorheological elastomers. Smart Materials and Structures, 2012, 21, 075014.	3.5	27
82	Properties of magneto-rheological fluids based on amorphous micro-particles. Transactions of Nonferrous Metals Society of China, 2012, 22, 2979-2983.	4.2	17
83	Magnetostrictive properties of titanate coupling agent treated Terfenol-D composites. Journal of Magnetism and Magnetic Materials, 2012, 324, 1205-1208.	2.3	14
84	Fabrication of Tb0.3Dy0.7Fe2/epoxy composites: Enhanced uniform magnetostrictive and mechanical properties using a dryprocess. Journal of Magnetism and Magnetic Materials, 2011, 323, 351-355.	2.3	14
85	Optimal orientation field to manufacture magnetostrictive composites with high magnetostrictive performance. Journal of Magnetism and Magnetic Materials, 2010, 322, 3648-3652.	2.3	17
86	Image analysis of the microstructure of pseudo-1-3 magnetostrictive composites. , 2010, , .		0
87	Effects of particle size on magnetostrictive properties of magnetostrictive composites with low particulate volume fraction. Proceedings of SPIE, 2009, , .	0.8	3
88	Predicting performance of polymer-bonded Terfenol-D composites under different magnetic fields. Journal of Magnetism and Magnetic Materials, 2009, 321, 2742-2748.	2.3	31
89	Influence of arrangement field on magnetostrictive and mechanical properties of magnetostrictive composites. Transactions of Nonferrous Metals Society of China, 2009, 19, 1454-1458.	4.2	11
90	Magnetostrictive effect of magnetorheological elastomer. Journal of Magnetism and Magnetic Materials, 2008, 320, 158-163.	2.3	196

#	Article	IF	CITATIONS
91	Predicting relationship between magnetostriction and applied field of magnetostrictive composites. Proceedings of SPIE, 2008, , .	0.8	Ο
92	Effect of soft magnetic materials blend on the properties of polymer-bonded Terfenol-D composites. , 2007, , .		0
93	<title>A novel electric current sensor based on Fiber Bragg gratings and magnetostrictive composites</title> ., 2007, , .		2
94	Vibration control and magnetostrictive composite materials. , 2006, , .		0
95	A Novel Brain-Computer Interface Flexible Electrode Material with Magnetorheological property. Materials Advances, 0, , .	5.4	0
96	Properties and mechanism of ionic liquid/silicone oil based magnetorheological fluids. International Journal of Smart and Nano Materials, 0, , 1-10.	4.2	3