Renata Basto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/266005/publications.pdf

Version: 2024-02-01

37 papers

3,040 citations

361413 20 h-index 361022

g-index

45 all docs

45 docs citations

45 times ranked

3003 citing authors

#	Article	IF	CITATIONS
1	Flies without Centrioles. Cell, 2006, 125, 1375-1386.	28.9	615
2	Centrosome Amplification Can Initiate Tumorigenesis in Flies. Cell, 2008, 133, 1032-1042.	28.9	491
3	Overexpressing Centriole-Replication Proteins In Vivo Induces Centriole Overduplication and De Novo Formation. Current Biology, 2007, 17, 834-843.	3.9	308
4	The Drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis. Journal of Cell Biology, 2004, 165, 673-683.	5 . 2	247
5	Centrosome amplification causes microcephaly. Nature Cell Biology, 2013, 15, 731-740.	10.3	223
6	Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nature Cell Biology, 2016, 18, 100-110.	10.3	145
7	From Stem Cell to Embryo without Centrioles. Current Biology, 2007, 17, 1498-1503.	3.9	129
8	The microcephaly protein Asp regulates neuroepithelium morphogenesis byÂcontrolling theÂspatial distribution of myosin II. Nature Cell Biology, 2013, 15, 1294-1306.	10.3	114
9	Never tear us apart – the importance of centrosome clustering. Journal of Cell Science, 2012, 125, 3281-3292.	2.0	74
10	Aneuploidy causes premature differentiation of neural and intestinal stem cells. Nature Communications, 2015, 6, 8894.	12.8	69
11	Multiple centrosomes: together they stand, divided they fall. Genes and Development, 2008, 22, 2291-2296.	5. 9	64
12	Moesin Is a Major Regulator of Centrosome Behavior in Epithelial Cells with Extra Centrosomes. Current Biology, 2015, 25, 879-889.	3.9	57
13	Genetic instability from a single S phase after whole-genome duplication. Nature, 2022, 604, 146-151.	27.8	54
14	<i>Drosophila</i> Ajuba is not an Aurora-A activator but is required to maintain Aurora-A at the centrosome. Journal of Cell Science, 2011, 124, 1156-1166.	2.0	48
15	Bug22 influences cilium morphology and the post-translational modification of ciliary microtubules. Biology Open, 2014, 3, 138-151.	1.2	42
16	Consequences of Centrosome Dysfunction During Brain Development. Advances in Experimental Medicine and Biology, 2017, 1002, 19-45.	1.6	41
17	Differences in Mitotic Spindle Architecture in Mammalian Neural Stem Cells Influence Mitotic Accuracy during Brain Development. Current Biology, 2019, 29, 2993-3005.e9.	3.9	29
18	Centrioles in flies: The exception to the rule?. Seminars in Cell and Developmental Biology, 2010, 21, 163-173.	5.0	28

#	Article	IF	Citations
19	Centrosome Amplification and Cancer: A Question of Sufficiency. Developmental Cell, 2017, 40, 217-218.	7.0	28
20	Plk4 Regulates Centriole Asymmetry and Spindle Orientation in Neural Stem Cells. Developmental Cell, 2019, 50, 11-24.e10.	7.0	26
21	Centrosomes in disease: how the same music can sound so different?. Current Opinion in Structural Biology, 2021, 66, 74-82.	5.7	26
22	Centrosome amplification disrupts renal development and causes cystogenesis. Journal of Cell Biology, 2018, 217, 2485-2501.	5. 2	24
23	Cell-Cycle Asynchrony Generates DNA Damage at Mitotic Entry in Polyploid Cells. Current Biology, 2019, 29, 3937-3945.e7.	3.9	24
24	Centrosomes: The good and the bad for brain development. Biology of the Cell, 2020, 112, 153-172.	2.0	24
25	Centromere Dysfunction Compromises Mitotic Spindle Pole Integrity. Current Biology, 2019, 29, 3072-3080.e5.	3.9	23
26	Chromosomes function as a barrier to mitotic spindle bipolarity in polyploid cells. Journal of Cell Biology, 2020, 219, .	5. 2	20
27	Sas-4 proteins are required during basal body duplication in <i>Paramecium</i> . Molecular Biology of the Cell, 2011, 22, 1035-1044.	2.1	14
28	The Janus soul of centrosomes: a paradoxical role in disease?. Chromosome Research, 2016, 24, 127-144.	2.2	8
29	Chromosome structural anomalies due to aberrant spindle forces exerted at gene editing sites in meiosis. Journal of Cell Biology, 2018, 217, 3416-3430.	5.2	8
30	Fast and furious or not, Plk4 dictates the pace. Journal of Cell Biology, 2018, 217, 1169-1171.	5. 2	7
31	Microcephaly: STIL(I) a Tale of Too Many Centrosomes. Current Biology, 2014, 24, R162-R164.	3.9	6
32	CHRONOCRISIS: When Cell Cycle Asynchrony Generates DNA Damage in Polyploid Cells. BioEssays, 2020, 42, 2000105.	2.5	5
33	New insights into centrosome imaging in Drosophila and mouse neuroepithelial tissues. Methods in Cell Biology, 2015, 129, 211-227.	1.1	4
34	When E-cadherin is away, centrosomes can play. Journal of Cell Biology, 2018, 217, 11-13.	5.2	3
35	Consequences of Numerical Centrosome Defects in Development and Disease., 2016,, 117-149.		2
36	A centriolar lifeline. Nature Reviews Molecular Cell Biology, 2012, 13, 686-686.	37.0	1

#	Article	IF	CITATIONS
37	Quantitative analysis of flagellar proteins in Drosophila sperm tails. Methods in Cell Biology, 2015, 127, 263-278.	1.1	O