Karim Benzerara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2659357/publications.pdf Version: 2024-02-01

		36303	53230
149	8,447	51	85
papers	citations	h-index	g-index
151	151	151	7701
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mass collection of magnetotactic bacteria from the permanently stratified ferruginous Lake Pavin, France. Environmental Microbiology, 2022, 24, 721-736.	3.8	7
2	Why do microbes make minerals?. Comptes Rendus - Geoscience, 2022, 354, 1-39.	1.2	16
3	Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 188, 106347.	2.9	40
4	A New Gene Family Diagnostic for Intracellular Biomineralization of Amorphous Ca Carbonates by Cyanobacteria. Genome Biology and Evolution, 2022, 14, .	2.5	14
5	Successive Modes of Carbonate Precipitation in Microbialites along the Hydrothermal Spring of La Salsa in Laguna Pastos Grandes (Bolivian Altiplano). Geosciences (Switzerland), 2022, 12, 88.	2.2	2
6	Cyanobacteria Accumulate Radium (²²⁶ Ra) within Intracellular Amorphous Calcium Carbonate Inclusions. ACS ES&T Water, 2022, 2, 616-623.	4.6	5
7	Intracellular silicification by early-branching magnetotactic bacteria. Science Advances, 2022, 8, eabn6045.	10.3	11
8	Detection of biogenic amorphous calcium carbonate (ACC) formed by bacteria using FTIR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 278, 121262.	3.9	10
9	Identification of sulfateâ€reducing magnetotactic bacteria via a groupâ€specific <scp>16S rDNA</scp> primer and correlative fluorescence and electron microscopy: Strategy for cultureâ€independent study. Environmental Microbiology, 2022, 24, 5019-5038.	3.8	5
10	The diversity of molecular mechanisms of carbonate biomineralization by bacteria. Discover Materials, 2021, 1, 1.	2.8	46
11	Intracellular amorphous Ca-carbonate and magnetite biomineralization by a magnetotactic bacterium affiliated to the Alphaproteobacteria. ISME Journal, 2021, 15, 1-18.	9.8	52
12	Fossilization, Process Of. , 2021, , 1-6.		0
13	Integrative analysis of the mineralogical and chemical composition of modern microbialites from ten Mexican lakes: What do we learn about their formation?. Geochimica Et Cosmochimica Acta, 2021, 305, 148-184.	3.9	28
14	Rapid formation of mature microbialites in Lake Alchichica, Mexico. Environmental Microbiology Reports, 2021, 13, 600-605.	2.4	2
15	Archaeal overdominance close to lifeâ€imiting conditions in geothermally influenced hypersaline lakes at the Danakil Depression, Ethiopia. Environmental Microbiology, 2021, 23, 7168-7182.	3.8	6
16	Core microbial communities of lacustrine microbialites sampled along an alkalinity gradient. Environmental Microbiology, 2021, 23, 51-68.	3.8	26
17	The gammaproteobacterium <i>Achromatium</i> forms intracellular amorphous calcium carbonate and not (crystalline) calcite. Geobiology, 2021, 19, 199-213.	2.4	20
18	Biogeochemical Niche of Magnetotactic Cocci Capable of Sequestering Large Polyphosphate Inclusions in the Anoxic Layer of the Lake Pavin Water Column. Frontiers in Microbiology, 2021, 12, 789134.	3.5	3

#	Article	IF	CITATIONS
19	Acoustic monitoring of laser-induced phase transitions in minerals: implication for Mars exploration with SuperCam. Scientific Reports, 2021, 11, 24019.	3.3	12
20	Exceptional preservation requires fast biodegradation: thylacocephalan specimens from La Voulteâ€surâ€Rhône (Callovian, Jurassic, France). Palaeontology, 2020, 63, 395-413.	2.2	13
21	Origin and Evolution of the Halo-Volcanic Complex of Dallol: Proto-Volcanism in Northern Afar (Ethiopia). Frontiers in Earth Science, 2020, 7, .	1.8	17
22	A Genetic Toolbox for the New Model Cyanobacterium Cyanothece PCC 7425: A Case Study for the Photosynthetic Production of Limonene. Frontiers in Microbiology, 2020, 11, 586601.	3.5	9
23	Evidence of high Ca uptake by cyanobacteria forming intracellular Ca <scp>CO</scp> ₃ and impact on their growth. Geobiology, 2019, 17, 676-690.	2.4	33
24	Sequestration of Radionuclides Radium-226 and Strontium-90 by Cyanobacteria Forming Intracellular Calcium Carbonates. Environmental Science & Technology, 2019, 53, 12639-12647.	10.0	33
25	Magnetite magnetosome biomineralization in Magnetospirillum magneticum strain AMB-1: A time course study. Chemical Geology, 2019, 530, 119348.	3.3	22
26	Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nature Microbiology, 2019, 4, 1088-1095.	13.3	57
27	Fe-bearing phases in modern lacustrine microbialites from Mexico. Geochimica Et Cosmochimica Acta, 2019, 253, 201-230.	3.9	11
28	Discovery of High Abundances of Aster-Like Nanoparticles in Pelagic Environments: Characterization and Dynamics. Frontiers in Microbiology, 2019, 10, 2376.	3.5	8
29	Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nature Ecology and Evolution, 2019, 3, 1552-1561.	7.8	62
30	Mineralogical Identification of Traces of Life. Advances in Astrobiology and Biogeophysics, 2019, , 123-144.	0.6	12
31	Cyanobacterial formation of intracellular Caâ€carbonates in undersaturated solutions. Geobiology, 2018, 16, 49-61.	2.4	42
32	Importance of Prokaryotes in the Functioning and Evolution of the Present and Past Geosphere and Biosphere. , 2018, , 57-129.		4
33	Impact of the cyanobacterium Gloeomargarita lithophora on the geochemical cycles of Sr and Ba. Chemical Geology, 2018, 483, 88-97.	3.3	19
34	Mineralizations and transition metal mobility driven by organic carbon during low-temperature serpentinization. Lithos, 2018, 323, 262-276.	1.4	9
35	Characterization of Pustular Mats and Related Rivularia-Rich Laminations in Oncoids From the Laguna Negra Lake (Argentina). Frontiers in Microbiology, 2018, 9, 996.	3.5	35
36	Amorphous Calcium Carbonate Granules Form Within an Intracellular Compartment in Calcifying Cyanobacteria. Frontiers in Microbiology, 2018, 9, 1768.	3.5	50

#	Article	IF	CITATIONS
37	Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation. Applied and Environmental Microbiology, 2018, 84, .	3.1	5
38	An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids. Current Biology, 2017, 27, 386-391.	3.9	275
39	Geochemical Conditions Allowing the Formation of Modern Lacustrine Microbialites. Procedia Earth and Planetary Science, 2017, 17, 380-383.	0.6	27
40	Single-Cell Resolution of Uncultured Magnetotactic Bacteria via Fluorescence-Coupled Electron Microscopy. Applied and Environmental Microbiology, 2017, 83, .	3.1	50
41	Magnetotactic Coccus Strain SHHC-1 Affiliated to Alphaproteobacteria Forms Octahedral Magnetite Magnetosomes. Frontiers in Microbiology, 2017, 8, 969.	3.5	35
42	In Vitro and in Silico Evidence of Phosphatase Diversity in the Biomineralizing Bacterium Ramlibacter tataouinensis. Frontiers in Microbiology, 2017, 8, 2592.	3.5	20
43	Description of Gloeomargarita lithophora gen. nov., sp. nov., a thylakoid-bearing, basal-branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 653-658.	1.7	72
44	Biomineralization Patterns of Intracellular Carbonatogenesis in Cyanobacteria: Molecular Hypotheses. Minerals (Basel, Switzerland), 2016, 6, 10.	2.0	48
45	Mineralogical Diversity in Lake Pavin: Connections with Water Column Chemistry and Biomineralization Processes. Minerals (Basel, Switzerland), 2016, 6, 24.	2.0	29
46	Variations in cometary dust composition from <i>Giotto</i> to <i>Rosetta</i> , clues to their formation mechanisms. Monthly Notices of the Royal Astronomical Society, 2016, 462, S323-S330.	4.4	28
47	Selective Uptake of Alkaline Earth Metals by Cyanobacteria Forming Intracellular Carbonates. Environmental Science & Technology, 2016, 50, 11654-11662.	10.0	47
48	Comparative metagenomics unveils functions and genome features of microbialiteâ€associated communities along a depth gradient. Environmental Microbiology, 2016, 18, 4990-5004.	3.8	30
49	Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates. Scientific Reports, 2016, 6, 25716.	3.3	45
50	Iron mineralogy across the oxycline of a lignite mine lake. Chemical Geology, 2016, 434, 28-42.	3.3	8
51	The Iron Wheel in Lac Pavin: Interaction with Phosphorus Cycle. , 2016, , 205-220.		14
52	Preservation in microbial mats: mineralization by a talc-like phase of a fish embedded in a microbial sarcophagus. Frontiers in Earth Science, 2015, 3, .	1.8	20
53	Formation of low-T hydrated silicates in modern microbialites from Mexico and implications for microbial fossilization. Frontiers in Earth Science, 2015, 3, .	1.8	57
54	Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites. Frontiers in Microbiology, 2015, 6, 797.	3.5	50

#	Article	IF	CITATIONS
55	The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites. Proceedings of the International Astronomical Union, 2015, 11, 253-256.	0.0	2
56	Emerging Frontiers in Geomicrobiology. Elements, 2015, 11, 423-429.	0.5	3
57	Evolution of the macromolecular structure of sporopollenin during thermal degradation. Heliyon, 2015, 1, e00034.	3.2	48
58	Protocols for the Study of Microbe–Mineral Interactions in Modern Microbialites. Springer Protocols, 2015, , 319-341.	0.3	0
59	Formation and transformations of Fe-rich serpentines by asteroidal aqueous alteration processes: A nanoscale study of the Murray chondrite. Geochimica Et Cosmochimica Acta, 2015, 158, 162-178.	3.9	18
60	Coprolites of Late Triassic carnivorous vertebrates from Poland: An integrative approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430, 21-46.	2.3	53
61	In vitro synthesis of amorphous Mg-, Ca-, Sr- and Ba-carbonates: What do we learn about intracellular calcification by cyanobacteria?. Geochimica Et Cosmochimica Acta, 2015, 161, 36-49.	3.9	44
62	Characterization of Ca-phosphate biological materials by scanning transmission X-ray microscopy (STXM) at the Ca L2,3-, P L2,3- and C K-edges. Acta Biomaterialia, 2015, 12, 260-269.	8.3	75
63	Fossilization, Process of. , 2015, , 886-890.		0
64	Biomineralization. , 2015, , 306-308.		0
65	The 2.1 Ga Old Francevillian Biota: Biogenicity, Taphonomy and Biodiversity. PLoS ONE, 2014, 9, e99438.	2.5	53
66	Comparative mineralogy, organic geochemistry and microbial diversity of the Autun black shale and Graissessac coal (France). International Journal of Coal Geology, 2014, 132, 147-157.	5.0	26
67	Intracellular biomineralization in bacteria. Frontiers in Microbiology, 2014, 5, 293.	3.5	21
68	16S rDNA-based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial lineages with contrasted patterns of intracellular carbonate mineralization. Frontiers in Microbiology, 2014, 5, 331.	3.5	47
69	Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation. Geochimica Et Cosmochimica Acta, 2014, 139, 327-343.	3.9	55
70	<i>Sphaerotilus natans</i> , a Neutrophilic Iron-Related Sheath-Forming Bacterium: Perspectives for Metal Remediation Strategies. Geomicrobiology Journal, 2014, 31, 64-75.	2.0	16
71	Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10933-10938.	7.1	221
72	Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France). Geochimica Et Cosmochimica Acta, 2014, 126, 78-96.	3.9	131

#	Article	IF	CITATIONS
73	Investigating Microbe-Mineral Interactions: Recent Advances in X-Ray and Electron Microscopy and Redox-Sensitive Methods. Annual Review of Earth and Planetary Sciences, 2014, 42, 271-289.	11.0	46
74	Molecular Phylogeny and Ultrastructure of Aphelidium aff. melosirae (Aphelida, Opisthosporidia). Protist, 2014, 165, 512-526.	1.5	43
75	Impact of biomineralization on the preservation of microorganisms during fossilization: An experimental perspective. Earth and Planetary Science Letters, 2014, 400, 113-122.	4.4	52
76	Soft x-ray scanning transmission spectromicroscopy. , 2014, , 115-134.		16
77	Geomicrobiological study of modern microbialites from Mexico: towards a better understanding of the ancient fossil record. BIO Web of Conferences, 2014, 2, 02002.	0.2	2
78	Fossilization, Process of. , 2014, , 1-6.		0
79	Biomineralization. , 2014, , 1-3.		0
80	Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-ray microscopy at the Fe L2,3 edges. Contributions To Mineralogy and Petrology, 2013, 166, 423-434.	3.1	77
81	The link between biomineralization and fossilization of bacteria: Insights from field and experimental studies. Chemical Geology, 2013, 359, 49-69.	3.3	118
82	Effect of iron metal and siderite on the durability of simulated archeological glassy material. Corrosion Science, 2013, 76, 403-414.	6.6	42
83	Microscopy evidence of bacterial microfossils in phosphorite crusts of the Peruvian shelf: Implications for phosphogenesis mechanisms. Chemical Geology, 2013, 359, 10-22.	3.3	63
84	Low temperature hydrothermal oil and associated biological precursors in serpentinites from Mid-Ocean Ridge. Lithos, 2013, 178, 84-95.	1.4	24
85	Multidisciplinary Evidences that Synechocystis PCC6803 Exopolysaccharides Operate in Cell Sedimentation and Protection against Salt and Metal Stresses. PLoS ONE, 2013, 8, e55564.	2.5	133
86	Graphite formation by carbonate reduction during subduction. Nature Geoscience, 2013, 6, 473-477.	12.9	155
87	Metasomatism and graphite formation at a lithological interface in Malaspina (Alpine Corsica, France). Contributions To Mineralogy and Petrology, 2013, 166, 1687-1708.	3.1	33
88	Specific carbonate–microbe interactions in the modern microbialites of Lake Alchichica (Mexico). ISME Journal, 2013, 7, 1997-2009.	9.8	75
89	Nanometerâ€scale characterization of exceptionally preserved bacterial fossils in <scp>P</scp> aleocene phosphorites from <scp>O</scp> uled <scp>A</scp> bdoun (<scp>M</scp> orocco). Geobiology, 2013, 11, 139-153.	2.4	84
90	Cyanobacterial calcification in modern microbialites at the submicrometer scale. Biogeosciences, 2013, 10, 5255-5266.	3.3	58

#	Article	IF	CITATIONS
91	Micro- and nano-textural evidence of Ti(–Ca–Fe) mobility during fluid–rock interactions in carbonaceous lawsonite-bearing rocks from New Zealand. Contributions To Mineralogy and Petrology, 2012, 164, 895-914.	3.1	20
92	Morphological preservation of carbonaceous plant fossils in blueschist metamorphic rocks from New Zealand. Geobiology, 2012, 10, 118-129.	2.4	32
93	Green Rust Formation during Fe(II) Oxidation by the Nitrate-Reducing <i>Acidovorax</i> sp. Strain BoFeN1. Environmental Science & Technology, 2012, 46, 1439-1446.	10.0	173
94	Experimental investigation of the stability of Feâ€rich carbonates in the lower mantle. Journal of Geophysical Research, 2012, 117, .	3.3	68
95	An Early-Branching Microbialite Cyanobacterium Forms Intracellular Carbonates. Science, 2012, 336, 459-462.	12.6	208
96	Biomineralization mechanisms. , 2011, , 450-468.		2
97	Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus - Geoscience, 2011, 343, 160-167.	1.2	145
98	Biogenic versus metamorphic origins of diverse microtubes in 2.7 Gyr old volcanic ashes: Multi-scale investigations. Earth and Planetary Science Letters, 2011, 312, 37-47.	4.4	40
99	<i>Solenicola setigera</i> is the first characterized member of the abundant and cosmopolitan uncultured marine stramenopile group MASTâ€3. Environmental Microbiology, 2011, 13, 193-202.	3.8	50
100	Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study. Geobiology, 2011, 9, 459-470.	2.4	70
101	Study of the crystallographic architecture of corals at the nanoscale by scanning transmission X-ray microscopy and transmission electron microscopy. Ultramicroscopy, 2011, 111, 1268-1275.	1.9	59
102	A unique skeletal microstructure of the deepâ€sea micrabaciid scleractinian corals. Journal of Morphology, 2011, 272, 191-203.	1.2	35
103	Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls. PLoS ONE, 2011, 6, e25771.	2.5	75
104	Prokaryotic and Eukaryotic Community Structure in Field and Cultured Microbialites from the Alkaline Lake Alchichica (Mexico). PLoS ONE, 2011, 6, e28767.	2.5	111
105	XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis. Carbon, 2010, 48, 2506-2516.	10.3	192
106	Nanotextures of aragonite in stromatolites from the quasi-marine Satonda crater lake, Indonesia. Geological Society Special Publication, 2010, 336, 211-224.	1.3	37
107	Microscopy study of biologically mediated alteration of natural midâ€oceanic ridge basalts and magnetic implications. Journal of Geophysical Research, 2010, 115, .	3.3	6
108	Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks. Geochimica Et Cosmochimica Acta, 2010, 74, 5054-5068.	3.9	58

#	Article	IF	CITATIONS
109	Extracellular Iron Biomineralization by Photoautotrophic Iron-Oxidizing Bacteria. Applied and Environmental Microbiology, 2009, 75, 5586-5591.	3.1	152
110	Ultrastructural and chemical study of modern and fossil sporoderms by Scanning Transmission X-ray Microscopy (STXM). Review of Palaeobotany and Palynology, 2009, 156, 248-261.	1.5	85
111	Transformation of vivianite by anaerobic nitrateâ€reducing ironâ€oxidizing bacteria. Geobiology, 2009, 7, 373-384.	2.4	133
112	Garnetâ€filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt. Geobiology, 2009, 7, 393-402.	2.4	40
113	Formation of Cell-Iron-Mineral Aggregates by Phototrophic and Nitrate-Reducing Anaerobic Fe(II)-Oxidizing Bacteria. Geomicrobiology Journal, 2009, 26, 93-103.	2.0	157
114	Looking for traces of life in minerals. Comptes Rendus - Palevol, 2009, 8, 617-628.	0.2	42
115	Microfossils. Comptes Rendus - Palevol, 2009, 8, 605-615.	0.2	21
116	Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochimica Et Cosmochimica Acta, 2009, 73, 696-711.	3.9	255
117	Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process. Geochimica Et Cosmochimica Acta, 2009, 73, 4180-4198.	3.9	246
118	Organic matter heterogeneities in 2.72Ga stromatolites: Alteration versus preservation by sulfur incorporation. Geochimica Et Cosmochimica Acta, 2009, 73, 6579-6599.	3.9	65
119	Microbially influenced formation of 2,724-million-year-old stromatolites. Nature Geoscience, 2008, 1, 118-121.	12.9	154
120	Raman Mapping Using Advanced Line-Scanning Systems: Geological Applications. Applied Spectroscopy, 2008, 62, 1180-1188.	2.2	82
121	Nanoscale study of As biomineralization in an acid mine drainage system. Geochimica Et Cosmochimica Acta, 2008, 72, 3949-3963.	3.9	64
122	Synchrotron X-ray studies of heavy metal mineral-microbe interactions. Mineralogical Magazine, 2008, 72, 169-173.	1.4	2
123	Study of Interactions Between Microbes and Minerals by Scanning Transmission X-Ray Microscopy (STXM). AIP Conference Proceedings, 2007, , .	0.4	2
124	Chrysocolla Redefined as Spertiniite. AIP Conference Proceedings, 2007, , .	0.4	11
125	Alteration of submarine basaltic glass from the Ontong Java Plateau: A STXM and TEM study. Earth and Planetary Science Letters, 2007, 260, 187-200.	4.4	97
126	Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks. Earth and Planetary Science Letters, 2007, 262, 257-272.	4.4	136

#	Article	IF	CITATIONS
127	Water, Life, and Planetary Geodynamical Evolution. Space Science Reviews, 2007, 129, 167-203.	8.1	28
128	Creating Habitable Zones, at all Scales, from Planets to Mud Micro-Habitats, on Earth and on Mars. Space Science Reviews, 2007, 129, 79-121.	8.1	34
129	Creating Habitable Zones, at all Scales, from Planets to Mud Micro-Habitats, on Earth and on Mars. Space Sciences Series of ISSI, 2007, , 79-121.	0.0	3
130	Microbial diversity on the Tatahouine meteorite. Meteoritics and Planetary Science, 2006, 41, 1249-1265.	1.6	35
131	Nanometer-Scale Chemical Heterogeneities of Black Carbon Materials and Their Impacts on PCB Sorption Properties:Â Soft X-ray Spectromicroscopy Study. Environmental Science & Technology, 2006, 40, 5923-5929.	10.0	39
132	Search for Microbial Signatures within Human and Microbial Calcifications Using Soft X-Ray Spectromicroscopy. Journal of Investigative Medicine, 2006, 54, 367-379.	1.6	40
133	The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environmental Microbiology, 2006, 8, 514-525.	3.8	192
134	Soft X-ray microscopy and spectroscopy at the molecular environmental science beamline at the Advanced Light Source. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150, 86-104.	1.7	292
135	Nanoscale detection of organic signatures in carbonate microbialites. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9440-9445.	7.1	212
136	Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles, 2005, 9, 263-274.	2.3	137
137	Nanoscale environments associated with bioweathering of a Mg-Fe-pyroxene. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 979-982.	7.1	83
138	TEM study of a silicate-carbonate-microbe interface prepared by focused ion beam milling. Geochimica Et Cosmochimica Acta, 2005, 69, 1413-1422.	3.9	75
139	Scanning transmission X-ray microscopy study of microbial calcification. Geobiology, 2004, 2, 249-259.	2.4	166
140	Experimental Colonization and Alteration of Orthopyroxene by the Pleomorphic BacteriaRamlibacter tataouinensis. Geomicrobiology Journal, 2004, 21, 341-349.	2.0	34
141	In Situ Characterization of Aluminum-Containing Mineralâ^'Microorganism Aqueous Suspensions Using Scanning Transmission X-ray Microscopy. Langmuir, 2004, 20, 10361-10366.	3.5	42
142	Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouinensis. Earth and Planetary Science Letters, 2004, 228, 439-449.	4.4	93
143	Nanobacteria-like calcite single crystals at the surface of the Tataouine meteorite. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7438-7442.	7.1	87
144	Cristobalite inclusions in the Tatahouine achondrite: Implications for shock conditions. American Mineralogist, 2002, 87, 1250-1256.	1.9	15

#	Article	IF	CITATIONS
145	Aqueous alteration in the Northwest Africa 817 (NWA 817) Martian meteorite. Earth and Planetary Science Letters, 2002, 203, 431-444.	4.4	71
146	Description of new shockâ€induced phases in the Shergotty, Zagami, Nakhla and Chassigny meteorites. Meteoritics and Planetary Science, 2001, 36, 1297-1305.	1.6	65
147	Bacteria in the Tatahouine meteorite: nanometric-scale life in rocks. Earth and Planetary Science Letters, 2000, 175, 161-167.	4.4	50
148	Calcium-Phosphate Biomineralization Induced by Alkaline Phosphatase Activity in Escherichia coli: Localization, Kinetics, and Potential Signatures in the Fossil Record. Frontiers in Earth Science, 0, 3, .	1.8	40
149	Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin. Geochemical Perspectives Letters, 0, , 35-41.	5.0	54