List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2659299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>N</i> 6-Methyladenosines in mRNAs reduce the accuracy of codon reading by transfer RNAs and peptide release factors. Nucleic Acids Research, 2021, 49, 2684-2699.	14.5	10
2	Estimation of peptide elongation times from ribosome profiling spectra. Nucleic Acids Research, 2021, 49, 5124-5142.	14.5	5
3	The structural basis for release-factor activation during translation termination revealed by time-resolved cryogenic electron microscopy. Nature Communications, 2019, 10, 2579.	12.8	43
4	The mechanism of error induction by the antibiotic viomycin provides insight into the fidelity mechanism of translation. ELife, 2019, 8, .	6.0	9
5	2′-O-methylation in mRNA disrupts tRNA decoding during translation elongation. Nature Structural and Molecular Biology, 2018, 25, 208-216.	8.2	92
6	Accuracy of genetic code translation and its orthogonal corruption by aminoglycosides and Mg2+ ions. Nucleic Acids Research, 2018, 46, 1362-1374.	14.5	25
7	Substrate-Induced Formation of Ribosomal Decoding Center for Accurate and Rapid Genetic Code Translation. Annual Review of Biophysics, 2018, 47, 525-548.	10.0	14
8	Cryo-EM shows stages of initial codon selection on the ribosome by aa-tRNA in ternary complex with GTP and the GTPase-deficient EF-TuH84A. Nucleic Acids Research, 2018, 46, 5861-5874.	14.5	29
9	Key Intermediates in Ribosome Recycling Visualized by Time-Resolved Cryoelectron Microscopy. journal of hand surgery Asian-Pacific volume, The, 2018, , 516-525.	0.4	0
10	A cryo-electron microscopic study of ribosome-bound termination factor RF2. journal of hand surgery Asian-Pacific volume, The, 2018, , 331-334.	0.4	0
11	A recent intermezzo at the Ribosome Club. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160185.	4.0	10
12	Transcriptional accuracy modeling suggests two-step proofreading by RNA polymerase. Nucleic Acids Research, 2017, 45, 11582-11593.	14.5	11
13	Ribosomes are optimized for autocatalytic production. Nature, 2017, 547, 293-297.	27.8	60
14	A conformational switch in initiation factor 2 controls the fidelity of translation initiation in bacteria. Nature Communications, 2017, 8, 1475.	12.8	25
15	Two proofreading steps amplify the accuracy of genetic code translation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13744-13749.	7.1	48
16	Key Intermediates in Ribosome Recycling Visualized by Time-Resolved Cryoelectron Microscopy. Structure, 2016, 24, 2092-2101.	3.3	68
17	Proofreading neutralizes potential error hotspots in genetic code translation by transfer RNAs. Rna, 2016, 22, 896-904.	3.5	26
18	Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome. Nucleic Acids Research, 2016, 44, 3264-3275.	14.5	10

#	Article	IF	CITATIONS
19	Complete kinetic mechanism for recycling of the bacterial ribosome. Rna, 2016, 22, 10-21.	3.5	33
20	Molecular mechanism of viomycin inhibition of peptide elongation in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 978-983.	7.1	40
21	N6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nature Structural and Molecular Biology, 2016, 23, 110-115.	8.2	202
22	Fusidic Acid Targets Elongation Factor G in Several Stages of Translocation on the Bacterial Ribosome. Journal of Biological Chemistry, 2015, 290, 3440-3454.	3.4	38
23	On the pH Dependence of Class-1 RF-Dependent Termination of mRNA Translation. Journal of Molecular Biology, 2015, 427, 1848-1860.	4.2	38
24	Determinants of the Rate of mRNA Translocation in Bacterial Protein Synthesis. Journal of Molecular Biology, 2015, 427, 1835-1847.	4.2	47
25	Accuracy of initial codon selection by aminoacyl-tRNAs on the mRNA-programmed bacterial ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9602-9607.	7.1	44
26	Free RNA polymerase in Escherichia coli. Biochimie, 2015, 119, 80-91.	2.6	32
27	DNA Template Dependent Accuracy Variation of Nucleotide Selection in Transcription. PLoS ONE, 2015, 10, e0119588.	2.5	10
28	Thermodynamic Modeling of Variations in the Rate of RNA Chain Elongation of E.Âcoli rrn Operons. Biophysical Journal, 2014, 106, 55-64.	0.5	6
29	Peptide Formation by <i>N</i> -Methyl Amino Acids in Translation Is Hastened by Higher pH and tRNA ^{Pro} . ACS Chemical Biology, 2014, 9, 1303-1311.	3.4	19
30	Medium-dependent control of the bacterial growth rate. Biochimie, 2013, 95, 643-658.	2.6	59
31	Optimal control of gene expression for fast proteome adaptation to environmental change. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20527-20532.	7.1	55
32	Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 131-136.	7.1	114
33	Inefficient Delivery but Fast Peptide Bond Formation of Unnatural <scp>l</scp> -Aminoacyl-tRNAs in Translation. Journal of the American Chemical Society, 2012, 134, 17955-17962.	13.7	28
34	Identification of enzyme inhibitory mechanisms from steady-state kinetics. Biochimie, 2011, 93, 1623-1629.	2.6	10
35	Activation of initiation factor 2 by ligands and mutations for rapid docking of ribosomal subunits. EMBO Journal, 2011, 30, 289-301.	7.8	25
36	Comment on "The Mechanism for Activation of GTP Hydrolysis on the Ribosome― Science, 2011, 333, 37-37.	12.6	38

#	Article	IF	CITATIONS
37	pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 79-84.	7.1	127
38	Rate and accuracy of messenger RNA translation on the ribosome. , 2011, , 225-235.		1
39	Errorâ€prone initiation factor 2 mutations reduce the fitness cost of antibiotic resistance. Molecular Microbiology, 2010, 75, 1299-1313.	2.5	22
40	Translocation in slow motion. Nature, 2010, 466, 325-326.	27.8	2
41	tmRNA·SmpB complex mimics native aminoacyl-tRNAs in the A site of stalled ribosomes. Journal of Structural Biology, 2010, 169, 342-348.	2.8	34
42	Systems Biology. FEBS Letters, 2009, 583, 3881-3881.	2.8	4
43	Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency. EMBO Journal, 2009, 28, 736-744.	7.8	43
44	Cis-acting resistance peptides reveal dual ribosome inhibitory action of the macrolide josamycin. Biochimie, 2009, 91, 989-995.	2.6	10
45	Complementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting. EMBO Journal, 2008, 27, 1706-1717.	7.8	53
46	Rate and accuracy of bacterial protein synthesis revisited. Current Opinion in Microbiology, 2008, 11, 141-147.	5.1	103
47	The Kinetics of Ribosomal Peptidyl Transfer Revisited. Molecular Cell, 2008, 30, 589-598.	9.7	133
48	Structure probing of tmRNA in distinct stages of trans-translation. Rna, 2007, 13, 713-722.	3.5	20
49	Interactions of the Release Factor RF1 with the Ribosome as Revealed by Cryo-EM. Journal of Molecular Biology, 2006, 357, 1144-1153.	4.2	64
50	How initiation factors tune the rate of initiation of protein synthesis in bacteria. EMBO Journal, 2006, 25, 2539-2550.	7.8	121
51	Trigger Factor Binding to Ribosomes with Nascent Peptide Chains of Varying Lengths and Sequences. Journal of Biological Chemistry, 2006, 281, 28033-28038.	3.4	39
52	Selective charging of tRNA isoacceptors induced by aminoâ€acid starvation. EMBO Reports, 2005, 6, 151-157.	4.5	201
53	What Makes Ribosome-Mediated Transcriptional Attenuation Sensitive to Amino Acid Limitation?. PLoS Computational Biology, 2005, 1, e2.	3.2	18
54	Mapping the interaction of SmpB with ribosomes by footprinting of ribosomal RNA. Nucleic Acids Research, 2005, 33, 3529-3539.	14.5	25

#	Article	IF	CITATIONS
55	tmRNA-induced Release of Messenger RNA from Stalled Ribosomes. Journal of Molecular Biology, 2005, 350, 897-905.	4.2	32
56	Mechanism for the Disassembly of the Posttermination Complex Inferred from Cryo-EM Studies. Molecular Cell, 2005, 18, 663-674.	9.7	117
57	Splitting of the Posttermination Ribosome into Subunits by the Concerted Action of RRF and EF-G. Molecular Cell, 2005, 18, 675-686.	9.7	132
58	The SAXS Solution Structure of RF1 Differs from Its Crystal Structure and Is Similar to Its Ribosome Bound Cryo-EM Structure. Molecular Cell, 2005, 20, 929-938.	9.7	98
59	Pre-binding of Small Protein B to a Stalled Ribosome Triggers trans-Translation. Journal of Biological Chemistry, 2004, 279, 25978-25985.	3.4	48
60	Control of rRNA Synthesis in Escherichia coli : a Systems Biology Approach. Microbiology and Molecular Biology Reviews, 2004, 68, 639-668.	6.6	166
61	Ribosome formation from subunits studied by stopped-flow and rayleigh light scattering. Biological Procedures Online, 2004, 6, 35-54.	2.9	106
62	Kinetics of Macrolide Action. Journal of Biological Chemistry, 2004, 279, 53506-53515.	3.4	56
63	Simultaneous binding of trigger factor and signal recognition particle to the E. coli ribosome. Biochimie, 2004, 86, 495-500.	2.6	32
64	Ribosome Rescue by tmRNA Requires Truncated mRNAs. Journal of Molecular Biology, 2004, 338, 33-41.	4.2	110
65	Stop codon recognition and interactions with peptide release factor RF3 of truncated and chimeric RF1 and RF2 from Escherichia coli. Molecular Microbiology, 2003, 50, 1467-1476.	2.5	43
66	The essential role of the invariant GGQ motif in the function and stability in vivo of bacterial release factors RF1 and RF2. Molecular Microbiology, 2003, 47, 267-275.	2.5	103
67	Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nature Structural and Molecular Biology, 2003, 10, 899-906.	8.2	317
68	A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature, 2003, 421, 87-90.	27.8	234
69	Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature, 2003, 421, 90-94.	27.8	191
70	NEW EMBO MEMBER'S REVIEW: Termination of translation: interplay of mRNA, rRNAs and release factors?. EMBO Journal, 2003, 22, 175-182.	7.8	206
71	Selective Charging of tRNA Isoacceptors Explains Patterns of Codon Usage. Science, 2003, 300, 1718-1722.	12.6	228
72	The Mechanism of Action of Macrolides, Lincosamides and Streptogramin B Reveals the Nascent Peptide Exit Path in the Ribosome. Journal of Molecular Biology, 2003, 330, 1005-1014.	4.2	368

#	Article	IF	CITATIONS
73	The Bacterial Toxin RelE Displays Codon-Specific Cleavage of mRNAs in the Ribosomal A Site. Cell, 2003, 112, 131-140.	28.9	500
74	Locking and Unlocking of Ribosomal Motions. Cell, 2003, 114, 123-134.	28.9	579
75	Peptidyl-tRNA Regulates the GTPase Activity of Translation Factors. Cell, 2003, 114, 113-122.	28.9	134
76	Free RNA polymerase and modeling global transcription in Escherichia coli. Biochimie, 2003, 85, 597-609.	2.6	93
77	Targeting and insertion of heterologous membrane proteins in E. coli. Biochimie, 2003, 85, 659-668.	2.6	31
78	Fast Evaluation of Fluctuations in Biochemical Networks With the Linear Noise Approximation. Genome Research, 2003, 13, 2475-2484.	5.5	348
79	Systems Biology Is Taking Off. Genome Research, 2003, 13, 2377-2380.	5.5	36
80	Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome. Journal of Cell Biology, 2003, 161, 679-684.	5.2	123
81	Release of Peptide Promoted by the GGQ Motif of Class 1 Release Factors Regulates the GTPase Activity of RF3. Molecular Cell, 2002, 10, 789-798.	9.7	172
82	Sensitivity analysis of metabolic cascades catalyzed by bifunctional enzymes. Molecular Biology Reports, 2002, 29, 211-215.	2.3	6
83	The hemK gene in Escherichia coli encodes the N5-glutamine methyltransferase that modifies peptide release factors. EMBO Journal, 2002, 21, 769-778.	7.8	131
84	A Posttermination Ribosomal Complex Is the Guanine Nucleotide Exchange Factor for Peptide Release Factor RF3. Cell, 2001, 107, 115-124.	28.9	186
85	Noise in a minimal regulatory network: plasmid copy number control. Quarterly Reviews of Biophysics, 2001, 34, 1-59.	5.7	204
86	Fusidic acid-resistant EF-G perturbs the accumulation of ppGpp. Molecular Microbiology, 2000, 37, 98-107.	2.5	42
87	Fluctuations and Quality of Control in Biological Cells: Zero-Order Ultrasensitivity Reinvestigated. Biophysical Journal, 2000, 79, 1228-1236.	0.5	108
88	Novel Roles for Classical Factors at the Interface between Translation Termination and Initiation. Molecular Cell, 1999, 3, 601-609.	9.7	205
89	Shutdown in protein synthesis due to the expression of mini-genes in bacteria. Journal of Molecular Biology, 1999, 291, 745-759.	4.2	55
90	Release factor RF3 abolishes competition between release factor RF1 and ribosome recycling factor (RRF) for a ribosome binding site. Journal of Molecular Biology, 1997, 273, 389-401.	4.2	65

#	Article	IF	CITATIONS
91	Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO Journal, 1997, 16, 4126-4133.	7.8	266
92	Mutants of EF-Tu defective in binding aminoacyl-tRNA. FEBS Letters, 1996, 382, 297-303.	2.8	13
93	Rate of Translation of Natural mRNAs in an Optimizedin VitroSystem. Archives of Biochemistry and Biophysics, 1996, 328, 9-16.	3.0	113
94	Guanosine tetraphosphate as a global regulator of bacterial RNA synthesis: a model involving RNA polymerase pausing and queuing. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1262, 15-36.	2.4	45
95	Impaired in vitro kinetics of EF-Tu mutant Aa. FEBS Journal, 1990, 188, 347-354.	0.2	18
96	Is translation inhibited by noncognate ternary complexes?. FEBS Letters, 1988, 233, 95-99.	2.8	29
97	Costs of accuracy determined by a maximal growth rate constraint. Quarterly Reviews of Biophysics, 1984, 17, 45-82.	5.7	200
98	Optimization of Translation Accuracy. Progress in Molecular Biology and Translational Science, 1984, 31, 191-219.	1.9	81
99	Catalytic effects of elongation factor Ts on polypeptide synthesis. EMBO Journal, 1982, 1, 75-78.	7.8	37
100	Kinetic suppression of translational errors by (p)ppGpp. Molecular Genetics and Genomics, 1982, 185, 269-274.	2.4	41
101	Mesoscopic kinetics and its applications in protein synthesis. , 0, , 95-18.		6