Daniel Muñoz-EspÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2658361/publications.pdf

Version: 2024-02-01

759233 839539 4,534 18 12 18 citations g-index h-index papers 19 19 19 6038 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cellular senescence: from physiology to pathology. Nature Reviews Molecular Cell Biology, 2014, 15, 482-496.	37.0	1,979
2	Programmed Cell Senescence during Mammalian Embryonic Development. Cell, 2013, 155, 1104-1118.	28.9	1,081
3	A guide to assessing cellular senescence <i>inÂvitro</i> and <i>inÂvivo</i> . FEBS Journal, 2021, 288, 56-80.	4.7	251
4	A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 2018, 10, .	6.9	204
5	Targeting senescent cells in translational medicine. EMBO Molecular Medicine, 2019, 11, e10234.	6.9	194
6	Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein IFITM3. Cell Reports, 2019, 27, 3956-3971.e6.	6.4	187
7	Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell, 2017, 16, 192-197.	6.7	179
8	An OFF–ON Two-Photon Fluorescent Probe for Tracking Cell Senescence <i>in Vivo</i> . Journal of the American Chemical Society, 2017, 139, 8808-8811.	13.7	138
9	Galactoâ€conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell, 2020, 19, e13142.	6.7	131
10	Cellular senescence in cancer: from mechanisms to detection. Molecular Oncology, 2021, 15, 2634-2671.	4.6	78
11	A Two-Photon Probe Based on Naphthalimide-Styrene Fluorophore for the <i>In Vivo</i> Tracking of Cellular Senescence. Analytical Chemistry, 2021, 93, 3052-3060.	6.5	29
12	In situ evidence of cellular senescence in Thymic Epithelial Cells (TECs) during human thymic involution. Mechanisms of Ageing and Development, 2019, 177, 88-90.	4.6	28
13	Activatable senoprobes and senolytics: Novel strategies to detect and target senescent cells. Mechanisms of Ageing and Development, 2022, 202, 111618.	4.6	16
14	Dual-Specificity Phosphatase 1 (DUSP1) Has a Central Role in Redox Homeostasis and Inflammation in the Mouse Cochlea. Antioxidants, 2021, 10, 1351.	5.1	11
15	Brain Cell Senescence: A New Therapeutic Target for the Acute Treatment of Ischemic Stroke. Journal of Neuropathology and Experimental Neurology, 2022, 81, 614-620.	1.7	8
16	Size-tuneable and immunocompatible polymer nanocarriers for drug delivery in pancreatic cancer. Nanoscale, 2022, 14, 6656-6669.	5.6	5
17	SARS-CoV-2-induced senescence as a potential therapeutic target. European Respiratory Journal, 2022, 60, 2201101.	6.7	2
18	Cellular senescence., 2022,, 3-26.		0