Christian Brander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2657221/publications.pdf

Version: 2024-02-01

96 7,983 40
papers citations h-index

49868
40
87
h-index
g-index

98 98
all docs docs citations

98 times ranked 8241 citing authors

#	Article	IF	CITATIONS
1	CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nature Medicine, 2007, 13, 46-53.	15.2	910
2	HLA class I supertypes: a revised and updated classification. BMC Immunology, 2008, $9,1.$	0.9	591
3	Evolution and transmission of stable CTL escape mutations in HIV infection. Nature, 2001, 412, 334-338.	13.7	523
4	Clustered Mutations in HIV-1 Gag Are Consistently Required for Escape from Hla-B27–Restricted Cytotoxic T Lymphocyte Responses. Journal of Experimental Medicine, 2001, 193, 375-386.	4.2	424
5	Comprehensive serological profiling of human populations using a synthetic human virome. Science, 2015, 348, aaa0698.	6.0	364
6	Cellular Immune Responses and Viral Diversity in Individuals Treated during Acute and Early HIV-1 Infection. Journal of Experimental Medicine, 2001, 193, 169-180.	4.2	363
7	Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection. PLoS Pathogens, 2012, 8, e1002529.	2.1	306
8	Escape from the Dominant HLA-B27-Restricted Cytotoxic T-Lymphocyte Response in Gag Is Associated with a Dramatic Reduction in Human Immunodeficiency Virus Type 1 Replication. Journal of Virology, 2007, 81, 12382-12393.	1.5	299
9	Relative Dominance of Gag p24-Specific Cytotoxic T Lymphocytes Is Associated with Human Immunodeficiency Virus Control. Journal of Virology, 2006, 80, 3122-3125.	1.5	275
10	Substantial Differences in Specificity of HIV-Specific Cytotoxic T Cells in Acute and Chronic HIV Infection. Journal of Experimental Medicine, 2001, 193, 181-194.	4.2	249
11	Control of human immunodeficiency virus replication by cytotoxic T lymphocytes targeting subdominant epitopes. Nature Immunology, 2006, 7, 173-178.	7.0	209
12	Comprehensive Analysis of Human Immunodeficiency Virus Type 1-Specific CD4 Responses Reveals Marked Immunodominance of gag and nef and the Presence of Broadly Recognized Peptides. Journal of Virology, 2004, 78, 4463-4477.	1.5	171
13	Efficient generation of human T cells from a tissue-engineered thymic organoid. Nature Biotechnology, 2000, 18, 729-734.	9.4	156
14	Impact of HLA-B Alleles, Epitope Binding Affinity, Functional Avidity, and Viral Coinfection on the Immunodominance of Virus-Specific CTL Responses. Journal of Immunology, 2006, 176, 4094-4101.	0.4	150
15	HLA-Associated Immune Escape Pathways in HIV-1 Subtype B Gag, Pol and Nef Proteins. PLoS ONE, 2009, 4, e6687.	1.1	148
16	Broad and Gag-Biased HIV-1 Epitope Repertoires Are Associated with Lower Viral Loads. PLoS ONE, 2008, 3, e1424.	1.1	146
17	Definition of the viral targets of protective HIV-1-specific T cell responses. Journal of Translational Medicine, 2011, 9, 208.	1.8	143
18	Structural and Functional Constraints Limit Options for Cytotoxic T-Lymphocyte Escape in the Immunodominant HLA-B27-Restricted Epitope in Human Immunodeficiency Virus Type 1 Capsid. Journal of Virology, 2008, 82, 5594-5605.	1.5	138

#	Article	IF	Citations
19	Comparison of overlapping peptide sets for detection of antiviral CD8 and CD4 T cell responses. Journal of Immunological Methods, 2003, 275, 19-29.	0.6	129
20	Extensive HLA class I allele promiscuity among viral CTL epitopes. European Journal of Immunology, 2007, 37, 2419-2433.	1.6	120
21	High-Functional-Avidity Cytotoxic T Lymphocyte Responses to HLA-B-Restricted Gag-Derived Epitopes Associated with Relative HIV Control. Journal of Virology, 2011, 85, 9334-9345.	1.5	120
22	Cell Cycle Control and HIV-1 Susceptibility Are Linked by CDK6-Dependent CDK2 Phosphorylation of SAMHD1 in Myeloid and Lymphoid Cells. Journal of Immunology, 2014, 193, 1988-1997.	0.4	118
23	CTL Responses of High Functional Avidity and Broad Variant Cross-Reactivity Are Associated with HIV Control. PLoS ONE, 2012, 7, e29717.	1.1	117
24	IL-8 responsiveness defines a subset of CD8 T cells poised to kill. Blood, 2004, 104, 3463-3471.	0.6	89
25	A human immune data-informed vaccine concept elicits strong and broad T-cell specificities associated with HIV-1 control in mice and macaques. Journal of Translational Medicine, 2015, 13, 60.	1.8	84
26	Phase I clinical trial of an intranodally administered mRNA-based therapeutic vaccine against HIV-1 infection. Aids, 2018, 32, 2533-2545.	1.0	65
27	Direct Interrogation of Viral Peptides Presented by the Class I HLA of HIV-Infected T Cells. Journal of Virology, 2014, 88, 12992-13004.	1.5	64
28	Gradual adaptation of HIV to human host populations: good or bad news?. Nature Medicine, 2003, 9, 1359-1362.	15.2	61
29	Safety and immunogenicity of a modified vaccinia Ankara-based HIV-1 vaccine (MVA-B) in HIV-1-infected patients alone or in combination with a drug to reactivate latent HIV-1. Journal of Antimicrobial Chemotherapy, 2015, 70, 1833-1842.	1.3	56
30	Increased Cytotoxic T-Lymphocyte Epitope Variant Cross-Recognition and Functional Avidity Are Associated with Hepatitis C Virus Clearance. Journal of Virology, 2008, 82, 3147-3153.	1.5	55
31	HIVconsv Vaccines and Romidepsin in Early-Treated HIV-1-Infected Individuals: Safety, Immunogenicity and Effect on the Viral Reservoir (Study BCN02). Frontiers in Immunology, 2020, 11, 823.	2.2	55
32	$\hat{l}\pm E\hat{l}^27$ (CD103) Expression Identifies a Highly Active, Tonsil-Resident Effector-Memory CTL Population. Journal of Immunology, 2005, 175, 4355-4362.	0.4	54
33	Viral adaptation to immune selection pressure by HLA class l–restricted CTL responses targeting epitopes in HIV frameshift sequences. Journal of Experimental Medicine, 2010, 207, 61-75.	4.2	52
34	Therapeutic Vaccination Refocuses T-cell Responses Towards Conserved Regions of HIV-1 in Early Treated Individuals (BCN 01 study). EClinicalMedicine, 2019, 11, 65-80.	3.2	52
35	A minor population of macrophage-tropic HIV-1 variants is identified in recrudescing viremia following analytic treatment interruption. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9981-9990.	3.3	51
36	Differential Clade-Specific HLA-B*3501 Association with HIV-1 Disease Outcome Is Linked to Immunogenicity of a Single Gag Epitope. Journal of Virology, 2012, 86, 12643-12654.	1.5	49

#	Article	IF	CITATIONS
37	Altered Response Hierarchy and Increased T-Cell Breadth upon HIV-1 Conserved Element DNA Vaccination in Macaques. PLoS ONE, 2014, 9, e86254.	1.1	47
38	Virological, Immune and Host genetics Markers in the Control of HIV Infection. Disease Markers, 2009, 27, 105-120.	0.6	45
39	HIV-1 p24gag Derived Conserved Element DNA Vaccine Increases the Breadth of Immune Response in Mice. PLoS ONE, 2013, 8, e60245.	1.1	44
40	The challenges of host and viral diversity in HIV vaccine design. Current Opinion in Immunology, 2006, 18, 430-437.	2.4	43
41	Identification of Effective Subdominant Anti-HIV-1 CD8+ T Cells Within Entire Post-infection and Post-vaccination Immune Responses. PLoS Pathogens, 2015, 11, e1004658.	2.1	42
42	Preclinical evaluation of an mRNA HIV vaccine combining rationally selected antigenic sequences and adjuvant signals (HTI-TriMix). Aids, 2017, 31, 321-332.	1.0	38
43	Simultaneous assessment of cytotoxic T lymphocyte responses against multiple viral infections by combined usage of optimal epitope matrices, anti- CD3 mAb T-cell expansion and "RecycleSpot". Journal of Translational Medicine, 2005, 3, 20.	1.8	34
44	Lytic and Latent Antigens of the Human Gammaherpesviruses Kaposi's Sarcoma-Associated Herpesvirus and Epstein-Barr Virus Induce T-Cell Responses with Similar Functional Properties and Memory Phenotypes. Journal of Virology, 2007, 81, 4904-4908.	1.5	32
45	Increased Sequence Diversity Coverage Improves Detection of HIV-Specific T Cell Responses. Journal of Immunology, 2007, 179, 6638-6650.	0.4	32
46	Absence of biologically important Kaposi sarcoma–associated herpesvirus gene products and virus-specific cellular immune responses in multiple myeloma. Blood, 2002, 100, 698-700.	0.6	31
47	iHIVARNA phase IIa, a randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of iHIVARNA-01 in chronically HIV-infected patients under stable combined antiretroviral therapy. Trials, 2019, 20, 361.	0.7	31
48	Increased detection of HIV-specific T cell responses by combination of central sequences with comparable immunogenicity. Aids, 2008, 22, 447-456.	1.0	29
49	Virological, immune and host genetics markers in the control of HIV infection. Disease Markers, 2009, 27, 105-20.	0.6	28
50	Novel, in-natural-infection subdominant HIV-1 CD8+ T-cell epitopes revealed in human recipients of conserved-region T-cell vaccines. PLoS ONE, 2017, 12, e0176418.	1.1	27
51	Increased expression of SAMHD1 in a subset of HIV-1 elite controllers. Journal of Antimicrobial Chemotherapy, 2014, 69, 3057-3060.	1.3	26
52	Mechanisms of Abrupt Loss of Virus Control in a Cohort of Previous HIV Controllers. Journal of Virology, 2019, 93, .	1.5	26
53	Novel Approaches Towards a Functional Cure of HIV/AIDS. Drugs, 2020, 80, 859-868.	4.9	26
54	Discrimination of human CD4 T cell clones based on their reactivity with antigen-presenting T cells. European Journal of Immunology, 1992, 22, 2295-2302.	1.6	25

#	Article	IF	Citations
55	Therapeutic Vaccine in Chronically HIV-1-Infected Patients: A Randomized, Double-Blind, Placebo-Controlled Phase IIa Trial with HTI-TriMix. Vaccines, 2019, 7, 209.	2.1	25
56	Immune Screening Identifies Novel T Cell Targets Encoded by Antisense Reading Frames of HIV-1. Journal of Virology, 2015, 89, 4015-4019.	1.5	24
57	A Phase I Randomized Therapeutic MVA-B Vaccination Improves the Magnitude and Quality of the T Cell Immune Responses in HIV-1-Infected Subjects on HAART. PLoS ONE, 2015, 10, e0141456.	1.1	24
58	Carrier-mediated uptake and presentation of a major histocompatibility complex class I-restricted peptide. European Journal of Immunology, 1993, 23, 3217-3223.	1.6	23
59	In vivo Effects of Romidepsin on T-Cell Activation, Apoptosis and Function in the BCN02 HIV-1 Kick&Kill Clinical Trial. Frontiers in Immunology, 2020, 11, 418.	2.2	23
60	Strong sex bias in elite control of paediatric HIV infection. Aids, 2019, 33, 67-75.	1.0	22
61	Zip6 Transporter Is an Essential Component of the Lymphocyte Activation Machinery. Journal of Immunology, 2019, 202, 441-450.	0.4	21
62	Increased Breadth and Depth of Cytotoxic T Lymphocytes Responses against HIV-1-B Nef by Inclusion of Epitope Variant Sequences. PLoS ONE, 2011, 6, e17969.	1.1	20
63	Alternative Effector-Function Profiling Identifies Broad HIV-Specific T-Cell Responses in Highly HIV-Exposed Individuals Who Remain Uninfected. Journal of Infectious Diseases, 2015, 211, 936-946.	1.9	18
64	HIV T-Cell Vaccines. Advances in Experimental Medicine and Biology, 2018, 1075, 31-51.	0.8	16
65	Recombinant BCG Expressing HTI Prime and Recombinant ChAdOx1 Boost Is Safe and Elicits HIV-1-Specific T-Cell Responses in BALB/c Mice. Vaccines, 2019, 7, 78.	2.1	16
66	Effect of Maraviroc Intensification on HIV-1-Specific T Cell Immunity in Recently HIV-1-Infected Individuals. PLoS ONE, 2014, 9, e87334.	1.1	15
67	HIV LTR-Driven Antisense RNA by Itself Has Regulatory Function and May Curtail Virus Reactivation From Latency. Frontiers in Microbiology, 2018, 9, 1066.	1.5	13
68	In silico veritas? Potential limitations for SARS-CoV-2 vaccine development based on T-cell epitope prediction. PLoS Pathogens, 2020, 16, e1008607.	2.1	13
69	Virological and immunological outcome of treatment interruption in HIV-1-infected subjects vaccinated with MVA-B. PLoS ONE, 2017, 12, e0184929.	1.1	13
70	T cells specific for different latent and lytic viral proteins efficiently control Epstein-Barr virusâ ϵ^{α} transformed B cells. Cytotherapy, 2015, 17, 1280-1291.	0.3	11
71	SARS-CoV-2 Consensus-Sequence and Matching Overlapping Peptides Design for COVID19 Immune Studies and Vaccine Development. Vaccines, 2020, 8, 444.	2.1	11
72	Detection of HIV-1-specific T-cell immune responses in highly HIV-exposed uninfected individuals by in-vitro dendritic cell co-culture. Aids, 2015, 29, 1309-1318.	1.0	10

#	Article	IF	CITATIONS
73	Development and Preclinical Evaluation of an Integrase Defective Lentiviral Vector Vaccine Expressing the HIVACAT T Cell Immunogen in Mice. Molecular Therapy - Methods and Clinical Development, 2020, 17, 418-428.	1.8	10
74	A 6-amino acid insertion/deletion polymorphism in the mucin domain of TIM-1 confers protections against HIV-1 infection. Microbes and Infection, 2017, 19, 69-74.	1.0	9
75	Does Antigen Glycosylation Impact the HIV-Specific T Cell Immunity?. Frontiers in Immunology, 2020, 11, 573928.	2.2	9
76	Guiding the humoral response against HIV-1 toward a MPER adjacent region by immunization with a VLP-formulated antibody-selected envelope variant. PLoS ONE, 2018, 13, e0208345.	1.1	8
77	Balance between activation and regulation of HIV-specific CD8+ T-cell response after modified vaccinia Ankara B therapeutic vaccination. Aids, 2016, 30, 553-562.	1.0	6
78	HLA class I protective alleles in an HIV-1-infected subject homozygous for CCR5-Δ32/Δ32. Immunobiology, 2013, 218, 543-547.	0.8	5
79	Benzyl-2-Acetamido-2-Deoxy-α-d-Galactopyranoside Increases Human Immunodeficiency Virus Replication and Viral Outgrowth Efficacy In Vitro. Frontiers in Immunology, 2018, 8, 2010.	2.2	5
80	Considerations for successful therapeutic immunization in HIV cure. Current Opinion in HIV and AIDS, 2021, Publish Ahead of Print, 257-261.	1.5	5
81	Epigenetic landscape in the kick-and-kill therapeutic vaccine BCN02 clinical trial is associated with antiretroviral treatment interruption (ATI) outcome. EBioMedicine, 2022, 78, 103956.	2.7	5
82	Capturing viral diversity for in-vitro test reagents and HIV vaccine immunogen design. Current Opinion in HIV and AIDS, 2007, 2, 183-188.	1.5	4
83	Provir/Latitude 45 study: A step towards a multi-epitopic CTL vaccine designed on archived HIV-1 DNA and according to dominant HLA I alleles. PLoS ONE, 2019, 14, e0212347.	1.1	4
84	Priming with Recombinant BCG Expressing HTI Enhances the Magnitude and Breadth of the T-Cell Immune Responses Elicited by MVA.HTI in BALB/c Mice. Vaccines, 2020, 8, 678.	2.1	4
85	Incoming HIV virion-derived Gag Spacer Peptide 2 (p1) is a target of effective CD8+ TÂcell antiviral responses. Cell Reports, 2021, 35, 109103.	2.9	4
86	Expansion of antibody secreting cells and modulation of neutralizing antibody activity in HIV infected individuals undergoing structured treatment interruptions. Journal of Translational Medicine, 2013, 11, 48.	1.8	3
87	Identification of Immunogenic Cytotoxic T Lymphocyte Epitopes Containing Drug Resistance Mutations in Antiretroviral Treatment-NaÃ-ve HIV-Infected Individuals. PLoS ONE, 2016, 11, e0147571.	1.1	3
88	TL1A–DR3 Plasma Levels Are Predictive of HIV-1 Disease Control, and DR3 Costimulation Boosts HIV-1–Specific T Cell Responses. Journal of Immunology, 2020, 205, 3348-3357.	0.4	3
89	FARMS: A New Algorithm for Variable Selection. BioMed Research International, 2015, 2015, 1-11.	0.9	2
90	Pharmacokinetic/pharmacodynamic analysis of romidepsin used as an HIV latency reversing agent. Journal of Antimicrobial Chemotherapy, 2021, 76, 1032-1040.	1.3	2

#	Article	IF	CITATIONS
91	Evaluation of the Thermal Stability of a Vaccine Prototype Based on Virus-like Particle Formulated HIV-1 Envelope. Vaccines, 2022, 10, 484.	2.1	2
92	Skewed Cellular Distribution and Low Activation of Functional T-Cell Responses in SARS-CoV-2 Non-Seroconvertors. Frontiers in Immunology, 2022, 13, .	2.2	2
93	Influenza, but not HIVâ€specific CTL epitopes, elicits delayedâ€type hypersensitivity (DTH) reactions in HIVâ€nfected patients. European Journal of Immunology, 2013, 43, 1545-1554.	1.6	1
94	Variants in the CYP7B1 gene region do not affect natural resistance to HIV-1 infection. Retrovirology, 2015, 12, 80.	0.9	1
95	T-Follicular-Like CD8+ T Cell Responses in Chronic HIV Infection Are Associated With Virus Control and Antibody Isotype Switching to IgG. Frontiers in Immunology, 0, 13, .	2.2	1
96	Monocyte-derived DC Electroporated with mRNAs Encoding Both Specific HIV Antigens and DC Adjuvants Are Able to Improve T-cell Functionality. AIDS Research and Human Retroviruses, 2014, 30, A194-A194.	0.5	0