
Serge A Picaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2657189/publications.pdf Version: 2024-02-01

SEDCE A DICALID

#	Article	IF	CITATIONS
1	Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa. Science, 2010, 329, 413-417.	12.6	578
2	Partial recovery of visual function in a blind patient after optogenetic therapy. Nature Medicine, 2021, 27, 1223-1229.	30.7	335
3	Light-emitting diodes (LED) for domestic lighting: Any risks for the eye?. Progress in Retinal and Eye Research, 2011, 30, 239-257.	15.5	319
4	Cellular retinol-binding protein I is essential for vitamin A homeostasis. EMBO Journal, 1999, 18, 4903-4914.	7.8	271
5	A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo. ELife, 2018, 7, .	6.0	251
6	Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nature Medicine, 1999, 5, 1183-1187.	30.7	218
7	Optogenetic therapy for retinitis pigmentosa. Gene Therapy, 2012, 19, 169-175.	4.5	207
8	Optimized Allotopic Expression of the Human Mitochondrial ND4 Prevents Blindness in a Rat Model of Mitochondrial Dysfunction. American Journal of Human Genetics, 2008, 83, 373-387.	6.2	199
9	Emerging therapies for inherited retinal degeneration. Science Translational Medicine, 2016, 8, 368rv6.	12.4	179
10	IL-1β induces rod degeneration through the disruption of retinal glutamate homeostasis. Journal of Neuroinflammation, 2020, 17, 1.	7.2	172
11	Targeting Channelrhodopsin-2 to ON-bipolar Cells With Vitreally Administered AAV Restores ON and OFF Visual Responses in Blind Mice. Molecular Therapy, 2015, 23, 7-16.	8.2	166
12	Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. Human Molecular Genetics, 2000, 9, 2491-2506.	2.9	160
13	Functional Cone Rescue by RdCVF Protein in a Dominant Model of Retinitis Pigmentosa. Molecular Therapy, 2009, 17, 787-795.	8.2	147
14	Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells. Human Molecular Genetics, 1996, 5, 1171-1178.	2.9	144
15	Glutamine-Expanded Ataxin-7 Alters TFTC/STAGA Recruitment and Chromatin Structure Leading to Photoreceptor Dysfunction. PLoS Biology, 2006, 4, e67.	5.6	143
16	Redâ€shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. EMBO Molecular Medicine, 2016, 8, 1248-1264.	6.9	139
17	A New Promoter Allows Optogenetic Vision Restoration with Enhanced Sensitivity in Macaque Retina. Molecular Therapy, 2017, 25, 2546-2560.	8.2	131
18	Bilateral visual improvement with unilateral gene therapy injection for Leber hereditary optic neuropathy. Science Translational Medicine, 2020, 12, .	12.4	128

#	Article	IF	CITATIONS
19	Microglial changes occur without neural cell death in diabetic retinopathy. Vision Research, 2007, 47, 612-623.	1.4	121
20	Phototoxic Action Spectrum on a Retinal Pigment Epithelium Model of Age-Related Macular Degeneration Exposed to Sunlight Normalized Conditions. PLoS ONE, 2013, 8, e71398.	2.5	120
21	The optomotor response: A robust first-line visual screening method for mice. Vision Research, 2005, 45, 1439-1446.	1.4	111
22	Panretinal, High-Resolution Color Photography of the Mouse Fundus. , 2007, 48, 2769.		111
23	3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials, 2015, 53, 173-183.	11.4	108
24	Taurine deficiency is a cause of vigabatrinâ€induced retinal phototoxicity. Annals of Neurology, 2009, 65, 98-107.	5.3	105
25	Purified Neurons can Survive on Peptideâ€Free Graphene Layers. Advanced Healthcare Materials, 2013, 2, 929-933.	7.6	103
26	Noninvasive gene delivery to foveal cones for vision restoration. JCI Insight, 2018, 3, .	5.0	102
27	High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse. Vision Research, 2006, 46, 1336-1345.	1.4	99
28	The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. Journal of Physiology, 2006, 577, 221-234.	2.9	93
29	Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells. Cell Death and Disease, 2018, 9, 287.	6.3	92
30	Restoration of visual function by transplantation of optogenetically engineered photoreceptors. Nature Communications, 2019, 10, 4524.	12.8	92
31	Taurine: The comeback of a neutraceutical in the prevention of retinal degenerations. Progress in Retinal and Eye Research, 2014, 41, 44-63.	15.5	90
32	Functional ultrasound imaging of the brain reveals propagation of task-related brain activity in behaving primates. Nature Communications, 2019, 10, 1400.	12.8	90
33	Cone photoreceptors respond to their own glutamate release in the tiger salamander Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9417-9421.	7.1	87
34	Inherited retinal degenerations: therapeutic prospects. Biology of the Cell, 2004, 96, 261-269.	2.0	84
35	3D functional ultrasound imaging of the cerebral visual system in rodents. NeuroImage, 2017, 149, 267-274.	4.2	82
36	Progressive retinal degeneration and dysfunction in R6 Huntington's disease mice. Human Molecular Genetics, 2002, 11, 3351-3359.	2.9	81

#	Article	IF	CITATIONS
37	Rod–Cone Interactions:. Progress in Retinal and Eye Research, 2001, 20, 451-467.	15.5	77
38	Lack of Niemann–Pick type C1 induces age-related degeneration in the mouse retina. Molecular and Cellular Neurosciences, 2010, 43, 164-176.	2.2	76
39	Taurine Provides Neuroprotection against Retinal Ganglion Cell Degeneration. PLoS ONE, 2012, 7, e42017.	2.5	74
40	The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress. Cell Death and Differentiation, 2010, 17, 1199-1210.	11.2	73
41	The primate model for understanding and restoring vision. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26280-26287.	7.1	73
42	Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Research and Therapy, 2015, 6, 177.	5.5	70
43	Vigabatrin, the GABA-transaminase inhibitor, damages cone photoreceptors in rats. Annals of Neurology, 2004, 55, 695-705.	5.3	68
44	CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival. EMBO Molecular Medicine, 2017, 9, 1711-1731.	6.9	66
45	Increased Vitreous Shedding of Microparticles in Proliferative Diabetic Retinopathy Stimulates Endothelial Proliferation. Diabetes, 2010, 59, 694-701.	0.6	65
46	Optogenetic therapy: high spatiotemporal resolution and pattern discrimination compatible with vision restoration in non-human primates. Communications Biology, 2021, 4, 125.	4.4	65
47	GABAC Receptors Are Localized with Microtubule-Associated Protein 1B in Mammalian Cone Photoreceptors. Journal of Neuroscience, 2000, 20, 6789-6796.	3.6	64
48	GABAAand GABACreceptors in adult porcine cones: evidence from a photoreceptor-glia co-culture model. Journal of Physiology, 1998, 513, 33-42.	2.9	63
49	Taurine deficiency damages photoreceptors and retinal ganglion cells in vigabatrin-treated neonatal rats. Molecular and Cellular Neurosciences, 2010, 43, 414-421.	2.2	60
50	Tissue engineering of retina through high resolution 3-dimensional inkjet bioprinting. Biofabrication, 2020, 12, 025006.	7.1	59
51	Inherited retinal degenerations: therapeutic prospects. Biology of the Cell, 2004, 96, 261-269.	2.0	57
52	Retinal-Cell–Conditioned Medium Prevents TNF-α-Induced Apoptosis of Purified Ganglion Cells. , 2005, 46, 2983.		55
53	Behavioural responses to a photovoltaic subretinal prosthesis implanted in non-human primates. Nature Biomedical Engineering, 2020, 4, 172-180.	22.5	55
54	Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina. Molecular Vision, 2005, 11, 688-96.	1.1	55

#	Article	IF	CITATIONS
55	Postsynaptic Response Kinetics Are Controlled by a Glutamate Transporter at Cone Photoreceptors. Journal of Neurophysiology, 1998, 79, 190-196.	1.8	53
56	3D shaped mechanically flexible diamond microelectrode arrays for eye implant applications: The MEDINAS project. Irbm, 2011, 32, 91-94.	5.6	53
57	Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: Model, production and inÂvivo biocompatibility. Biomaterials, 2015, 67, 73-83.	11.4	53
58	Otx2 Promotes the Survival of Damaged Adult Retinal Ganglion Cells and Protects against Excitotoxic Loss of Visual Acuity <i>In Vivo</i> . Journal of Neuroscience, 2011, 31, 5495-5503.	3.6	52
59	A review of in vivo animal studies in retinal prosthesis research. Graefe's Archive for Clinical and Experimental Ophthalmology, 2008, 246, 1505-1517.	1.9	51
60	Genotypic and Phenotypic Characterization of P23H Line 1 Rat Model. PLoS ONE, 2015, 10, e0127319.	2.5	51
61	Distribution of vesicular glutamate transporters in rat and human retina. Brain Research, 2006, 1082, 73-85.	2.2	49
62	Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation. Journal of Neural Engineering, 2011, 8, 046020.	3.5	49
63	Late histological and functional changes in the P23H rat retina after photoreceptor loss. Neurobiology of Disease, 2010, 38, 47-58.	4.4	48
64	Taurine deficiency damages retinal neurones: cone photoreceptors and retinal ganglion cells. Amino Acids, 2012, 43, 1979-1993.	2.7	48
65	VEGF is an autocrine/paracrine neuroprotective factor for injured retinal ganglion neurons. Scientific Reports, 2020, 10, 12409.	3.3	48
66	Usher syndrome type 1–associated cadherins shape the photoreceptor outer segment. Journal of Cell Biology, 2017, 216, 1849-1864.	5.2	47
67	Multiplexed computations in retinal ganglion cells of a single type. Nature Communications, 2017, 8, 1964.	12.8	47
68	Excessive activation of cyclic nucleotide $\hat{\epsilon}$ gated channels contributes to neuronal degeneration of photoreceptors. European Journal of Neuroscience, 2005, 22, 1013-1022.	2.6	46
69	Artificial retina: the multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device. Journal of Neural Engineering, 2012, 9, 066004.	3.5	46
70	Neural stimulation for visual rehabilitation: Advances and challenges. Journal of Physiology (Paris), 2013, 107, 421-431.	2.1	45
71	Retinal electrophysiology for toxicology studies: Applications and limits of ERG in animals and ex vivo recordings. Experimental and Toxicologic Pathology, 2008, 60, 17-32.	2.1	44
72	Gene Therapy in Ophthalmology: Validation on Cultured Retinal Cells and Explants from Postmortem Human Eyes. Human Gene Therapy, 2011, 22, 587-593.	2.7	44

#	Article	IF	CITATIONS
73	Functional ultrasound imaging of deep visual cortex in awake nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14453-14463.	7.1	44
74	Advanced glycation end products can induce glial reaction and neuronal degeneration in retinal explants. British Journal of Ophthalmology, 2005, 89, 1631-1633.	3.9	43
75	Multichannel Boron Doped Nanocrystalline Diamond Ultramicroelectrode Arrays: Design, Fabrication and Characterization. Sensors, 2012, 12, 7669-7681.	3.8	43
76	Pixium Vision: First Clinical Results and Innovative Developments. , 2017, , 99-113.		43
77	Voltage-Gated Channels and Calcium Homeostasis in Mammalian Rod Photoreceptors. Journal of Neurophysiology, 2005, 93, 1468-1475.	1.8	42
78	Cellular localization of the vesicular inhibitory amino acid transporter in the mouse and human retina. Journal of Comparative Neurology, 2002, 449, 76-87.	1.6	41
79	Chapter 47 Rod-cone interdependence: implications for therapy of photoreceptor cell diseases. Progress in Brain Research, 2001, 131, 649-661.	1.4	40
80	Retinal prostheses: Clinical results and future challenges. Comptes Rendus - Biologies, 2014, 337, 214-222.	0.2	40
81	Toward smart design of retinal drug carriers: a novel bovine retinal explant model to study the barrier role of the vitreoretinal interface. Drug Delivery, 2017, 24, 1384-1394.	5.7	39
82	Graded Otx2 activities demonstrate dose-sensitive eye and retina phenotypes. Human Molecular Genetics, 2014, 23, 1742-1753.	2.9	38
83	Mammalian retinal horizontal cells are unconventional GABAergic neurons. Journal of Neurochemistry, 2011, 116, 350-362.	3.9	37
84	Distinctive Glial and Neuronal Interfacing on Nanocrystalline Diamond. PLoS ONE, 2014, 9, e92562.	2.5	37
85	Boron doped diamond biotechnology: from sensors to neurointerfaces. Faraday Discussions, 2014, 172, 47-59.	3.2	36
86	Treatment of epilepsy: the GABAâ€ŧransaminase inhibitor, vigabatrin, induces neuronal plasticity in the mouse retina. European Journal of Neuroscience, 2008, 27, 2177-2187.	2.6	35
87	Taurine Depletion Causes ipRGC Loss and Increases Light-Induced Photoreceptor Degeneration. , 2018, 59, 1396.		32
88	Subretinal electrode implantation in the P23H rat for chronic stimulations. British Journal of Ophthalmology, 2006, 90, 1183-1187.	3.9	31
89	Quantitative and Topographical Analysis of the Losses of Cone Photoreceptors and Retinal Ganglion Cells Under Taurine Depletion. , 2016, 57, 4692.		31
90	Effect of hyaluronic acid-binding to lipoplexes on intravitreal drug delivery for retinal gene therapy. European Journal of Pharmaceutical Sciences, 2017, 103, 27-35.	4.0	31

#	Article	IF	CITATIONS
91	Structure and Conformation of the Carotenoids in Human Retinal Macular Pigment. PLoS ONE, 2015, 10, e0135779.	2.5	29
92	Cone degeneration is triggered by the absence of USH1 proteins but prevented by antioxidant treatments. Scientific Reports, 2018, 8, 1968.	3.3	29
93	Retinal Dystrophy Resulting from Ablation of RXRα in the Mouse Retinal Pigment Epithelium. American Journal of Pathology, 2004, 164, 701-710.	3.8	28
94	A Low-Cost and Simple Imaging Technique of the Anterior and Posterior Segments: Eye Fundus, Ciliary Bodies, Iridocorneal Angle. , 2008, 49, 5168.		27
95	Diltiazem-induced Neuroprotection in Glutamate Excitotoxicity and Ischemic Insult of Retinal Neurons. Documenta Ophthalmologica, 2005, 110, 25-35.	2.2	26
96	Bioluminescent imaging of Ca ²⁺ activity reveals spatiotemporal dynamics in glial networks of darkâ€adapted mouse retina. Journal of Physiology, 2007, 583, 945-958.	2.9	26
97	Taurine Is a Crucial Factor to Preserve Retinal Ganglion Cell Survival. Advances in Experimental Medicine and Biology, 2013, 775, 69-83.	1.6	26
98	CXCR3 Antagonism of SDF-1(5-67) Restores Trabecular Function and Prevents Retinal Neurodegeneration in a Rat Model of Ocular Hypertension. PLoS ONE, 2012, 7, e37873.	2.5	26
99	Purification of Mammalian Cone Photoreceptors by Lectin Panning and the Enhancement of Their Survival in Glia-Conditioned Medium. , 2005, 46, 367.		25
100	LRIT3 Differentially Affects Connectivity and Synaptic Transmission of Cones to ON- and OFF-Bipolar Cells. , 2017, 58, 1768.		25
101	Selective illumination of single photoreceptors in the house fly retina: local membrane turnover and uptake of extracellular horseradish peroxidase (HRP) and Lucifer Yellow. Cell and Tissue Research, 1989, 257, 565-576.	2.9	23
102	Use of a combined slitâ€lamp SDâ€OCT to obtain anterior and posterior segment images in selected animal species. Veterinary Ophthalmology, 2012, 15, 105-115.	1.0	22
103	Mitochondrial Protection by Exogenous Otx2 in Mouse Retinal Neurons. Cell Reports, 2015, 13, 990-1002.	6.4	22
104	Functional rescue of cone photoreceptors in retinitis pigmentosa. Graefe's Archive for Clinical and Experimental Ophthalmology, 2013, 251, 1669-1677.	1.9	21
105	β-alanine supplementation induces taurine depletion and causes alterations of the retinal nerve fiber layer and axonal transport by retinal ganglion cells. Experimental Eye Research, 2019, 188, 107781.	2.6	21
106	Towards optogenetic vision restoration with high resolution. PLoS Computational Biology, 2020, 16, e1007857.	3.2	20
107	Assessing Photoreceptor Status in Retinal Dystrophies: From High-Resolution Imaging to Functional Vision. American Journal of Ophthalmology, 2021, 230, 12-47.	3.3	19
108	Glycine receptors in a population of adult mammalian cones. Journal of Physiology, 2006, 571, 391-401.	2.9	18

#	Article	IF	CITATIONS
109	Simulations to study spatial extent of stimulation and effect of electrode–tissue gap in subretinal implants. Medical Engineering and Physics, 2011, 33, 755-763.	1.7	17
110	Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy. Materials Science and Engineering C, 2016, 69, 77-84.	7.3	17
111	The sarcoglycan–sarcospan complex localization in mouse retina is independent from dystrophins. Neuroscience Research, 2005, 53, 25-33.	1.9	16
112	Processing of chromogranins/secretogranin in patients with diabetic retinopathy. Regulatory Peptides, 2011, 167, 118-124.	1.9	16
113	Phototoxic damage to cone photoreceptors can be independent of the visual pigment: the porphyrin hypothesis. Cell Death and Disease, 2020, 11, 711.	6.3	16
114	Dye-induced photopermeabilization and photodegeneration: A lesion technique useful for neuronal tracing. Journal of Neuroscience Methods, 1990, 33, 101-112.	2.5	15
115	The Toxicity of the PrP106-126 Prion Peptide on Cultured Photoreceptors Correlates with the Prion Protein Distribution in the Mammalian and Human Retina. American Journal of Pathology, 2007, 170, 1314-1324.	3.8	15
116	Determination of Morphological, Biometric and Biochemical Susceptibilities in Healthy Eurasier Dogs with Suspected Inherited Glaucoma. PLoS ONE, 2014, 9, e111873.	2.5	15
117	Taurine Promotes Retinal Ganglion Cell Survival Through GABAB Receptor Activation. Advances in Experimental Medicine and Biology, 2017, 975 Pt 2, 687-701.	1.6	15
118	Impact of the COVID-19 lockdown on basic science research in ophthalmology: the experience of a highly specialized research facility in France. Eye, 2020, 34, 1187-1188.	2.1	15
119	A passive pressure sensor for continuously measuring the intraocular pressure in glaucomatous patients. Irbm, 2012, 33, 117-122.	5.6	14
120	Study of retinal alterations in a high fat diet-induced type ii diabetes rodent: Meriones shawi. Acta Histochemica, 2017, 119, 1-9.	1.8	14
121	Highâ€Frequency Stimulation of Normal and Blind Mouse Retinas Using TiO ₂ Nanotubes. Advanced Functional Materials, 2018, 28, 1804639.	14.9	13
122	Implication of folate deficiency in CYP2U1 loss of function. Journal of Experimental Medicine, 2021, 218, .	8.5	13
123	InÂvivo optogenetic stimulation of the primate retina activates the visual cortex after long-term transduction. Molecular Therapy - Methods and Clinical Development, 2022, 24, 1-10.	4.1	13
124	Probing the functional impact of sub-retinal prosthesis. ELife, 2016, 5, .	6.0	12
125	Novel Graphene Electrode for Retinal Implants: An in vivo Biocompatibility Study. Frontiers in Neuroscience, 2021, 15, 615256.	2.8	12
126	â€~Photo-degeneration' of neurones after extracellular dye application. Neuroscience Letters, 1988, 95, 24-30.	2.1	11

8

#	Article	IF	CITATIONS
127	Planar polarity in primate cone photoreceptors: a potential role in Stiles Crawford effect phototropism. Communications Biology, 2022, 5, 89.	4.4	11
128	Failed remyelination of the nonhuman primate optic nerve leads to axon degeneration, retinal damages, and visual dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115973119.	7.1	11
129	Incorporation of chromaffin granule membranes into large-size vesicles suitable for patch-clamp recording. FEBS Letters, 1984, 178, 20-24.	2.8	10
130	Long-term expression of melanopsin and channelrhodopsin causes no gross alterations in the dystrophic dog retina. Gene Therapy, 2017, 24, 735-741.	4.5	10
131	Blue-violet light decreases VEGFa production in an in vitro model of AMD. PLoS ONE, 2019, 14, e0223839.	2.5	10
132	Control of Microbial Opsin Expression in Stem Cell Derived Cones for Improved Outcomes in Cell Therapy. Frontiers in Cellular Neuroscience, 2021, 15, 648210.	3.7	10
133	Substantial restoration of night vision in adult mice with congenital stationary night blindness. Molecular Therapy - Methods and Clinical Development, 2021, 22, 15-25.	4.1	10
134	Molecular cloning and protein expression of Duchenne muscular dystrophy gene products in porcine retina. Neuromuscular Disorders, 2005, 15, 476-487.	0.6	9
135	Sildenafil Acutely Decreases Visual Responses in ON and OFF Retinal Ganglion Cells. , 2015, 56, 2639.		9
136	268. Optogenetic Engineering of Retinal Ganglion Cells with AAV2.7m8-ChrimsonR-tdTomato (GS030-DP) Is Well Tolerated and Induces Functional Responses to Light in Non-Human Primates. Molecular Therapy, 2016, 24, S106-S107.	8.2	9
137	Col4a1 mutation generates vascular abnormalities correlated with neuronal damage in a mouse model of HANAC syndrome. Neurobiology of Disease, 2017, 100, 52-61.	4.4	9
138	A biophysical model explains the spontaneous bursting behavior in the developing retina. Scientific Reports, 2019, 9, 1859.	3.3	9
139	Vision Restoration by Optogenetic Therapy and Developments Toward Sonogenetic Therapy. Translational Vision Science and Technology, 2022, 11, 18.	2.2	9
140	Chapter 2 - Restoring Vision to the Blind: Optogenetics. Translational Vision Science and Technology, 2014, 3, 4.	2.2	8
141	Chapter 7- Restoring Vision to the Blind: Advancements in Vision Aids for the Visually Impaired. Translational Vision Science and Technology, 2014, 3, 9.	2.2	8
142	Glial Cell Activation and Oxidative Stress in Retinal Degeneration Induced by β-Alanine Caused Taurine Depletion and Light Exposure. International Journal of Molecular Sciences, 2022, 23, 346.	4.1	8
143	Dye-induced photolesion in the mammalian retina: Glial and neuronal reactions. Journal of Neuroscience Research, 1993, 35, 629-642.	2.9	7
144	Cellular-resolution in vivo imaging of the feline retina using adaptive optics: preliminary results. Veterinary Ophthalmology, 2010, 13, 369-376.	1.0	7

#	Article	IF	CITATIONS
145	NeuroPXI: A real-time multi-electrode array system for recording, processing and stimulation of neural networks and the control of high-resolution neural implants for rehabilitation. Irbm, 2012, 33, 55-60.	5.6	7
146	Long-Term <i>in vivo</i> Impedance Changes of Subretinal Microelectrodes Implanted in Dystrophic P23H Rats. International Journal of Artificial Organs, 2013, 36, 612-619.	1.4	7
147	PRIMA subretinal wireless photovoltaic microchip implantation in non-human primate and feline models. PLoS ONE, 2020, 15, e0230713.	2.5	7
148	Protuberant Electrode Structures for Subretinal Electrical Stimulation: Modeling, Fabrication and in vivo Evaluation. Frontiers in Neuroscience, 2019, 13, 885.	2.8	6
149	Impedance spectroscopy study of the retinal pigment epithelium: Application to the monitoring of blue light exposure effect on A2E-loaded in-vitro cell cultures. Biosensors and Bioelectronics, 2020, 161, 112180.	10.1	6
150	The epithelial sodium channel (ENaC) in rodent retina, ontogeny and molecular identity. Current Eye Research, 2000, 21, 703-709.	1.5	6
151	Nonretinoid chaperones improve rhodopsin homeostasis in a mouse model of retinitis pigmentosa. JCl Insight, 2022, 7, .	5.0	6
152	Dye-induced †photo-degeneration' and †photo-permeabilization' of mammalian neurons in vivo. Brain Research, 1990, 531, 117-126.	2.2	5
153	Expression of Dystrophins and the Dystrophin-Associated-Protein Complex by Pituicytes in Culture. Neurochemical Research, 2011, 36, 1407-1416.	3.3	5
154	MISFET-based biosensing interface for neurons guided growth and neuronal electrical activities recording. Sensors and Actuators B: Chemical, 2014, 203, 375-381.	7.8	5
155	Panton-Valentine Leucocidin Proves Direct Neuronal Targeting and Its Early Neuronal and Clial Impacts a Rabbit Retinal Explant Model. Toxins, 2018, 10, 455.	3.4	5
156	Carotenoid composition and conformation in retinal oil droplets of the domestic chicken*. PLoS ONE, 2019, 14, e0217418.	2.5	5
157	Evidence for functional GABA _A but not GABA _C receptors in mouse cone photoreceptors. Visual Neuroscience, 2019, 36, E005.	1.0	5
158	Microcebus murinus retina: A new model to assess prion-related neurotoxicity in primates. Neurobiology of Disease, 2010, 39, 211-220.	4.4	4
159	Taurine Deficiency and the Eye. , 2014, , 505-513.		4
160	Cell specific electrodes for neuronal network reconstruction and monitoring. Analyst, The, 2014, 139, 3281.	3.5	4
161	Evaluation of the Taurine Concentrations in Dog Plasma and Aqueous Humour: A Pilot Study. Advances in Experimental Medicine and Biology, 2013, 775, 145-154.	1.6	4
162	Spatiotemporal response of rat visual cortex during moving stimuli using Functional Ultrasound (fUS) imaging. , 2016, , .		1

10

#	Article	IF	CITATIONS
163	Retinal Prostheses: Other Therapies and Future Directions. Essentials in Ophthalmology, 2018, , 105-125.	0.1	1
164	Blue light toxic action spectrum on A2E-loaded RPE cells in sunlight normalized conditions. Acta Ophthalmologica, 2013, 91, 0-0.	1.1	1
165	Leber Congenital Amaurosis — Genotyping Required for Possible Inclusion in a Clinical Trial. Advances in Experimental Medicine and Biology, 2003, 533, 69-77.	1.6	1
166	Single and Multisite Grapheneâ€Based Electroretinography Recording Electrodes: A Benchmarking Study. Advanced Materials Technologies, 0, , 2101181.	5.8	1
167	Reply to Rod photoreceptor rescue or degeneration. Nature Medicine, 2000, 6, 116-116.	30.7	0
168	Retinal prosthesis : Testing prototypes on a dystrophic rat retina. , 2007, , .		0
169	A Promise of Vision Restoration. , 0, , 356-370.		0
170	Minocycline as a new neuroprotective agent in a rodent model of NAION. Acta Ophthalmologica, 2013, 91, 0-0.	1.1	0
171	Importance of taurine in maintaining retinal function. Acta Ophthalmologica, 2013, 91, 0-0.	1.1	0
172	Analysis of retinal and cortical response to electrical stimulation by subretinal implant in rodent. Acta Ophthalmologica, 2013, 91, 0-0.	1.1	0
173	Microglial activation in a rat model of NAION. Acta Ophthalmologica, 2014, 92, 0-0.	1.1	0
174	Towards optogenetic vision restoration with high resolution. , 2020, 16, e1007857.		0
175	Towards optogenetic vision restoration with high resolution. , 2020, 16, e1007857.		0
176	Towards optogenetic vision restoration with high resolution. , 2020, 16, e1007857.		0
177	Towards optogenetic vision restoration with high resolution. , 2020, 16, e1007857.		0
178	Towards optogenetic vision restoration with high resolution. , 2020, 16, e1007857.		0
179	Towards optogenetic vision restoration with high resolution. , 2020, 16, e1007857.		0