Takayuki Tohge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/265678/publications.pdf

Version: 2024-02-01

189 papers

22,987 citations

71

h-index

10986

9103

202 all docs 202 docs citations

times ranked

202

23021 citing authors

g-index

#	Article	IF	Citations
1	MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 2010, 45, 703-714.	1.6	1,831
2	Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant Journal, 2014, 77, 367-379.	5.7	911
3	Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant Journal, 2005, 42, 218-235.	5.7	891
4	Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6478-6483.	7.1	666
5	The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiology and Biochemistry, 2013, 72, 21-34.	5.8	637
6	<scp>M</scp> ercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant, Cell and Environment, 2014, 37, 1250-1258.	5.7	575
7	<i>JUNGBRUNNEN1</i> , a Reactive Oxygen Species–Responsive NAC Transcription Factor, Regulates Longevity in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 482-506.	6.6	512
8	Metabolic priming by a secreted fungal effector. Nature, 2011, 478, 395-398.	27.8	509
9	Members of the <i>LBD</i> Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in <i>Arabidopsis</i> A. Plant Cell, 2009, 21, 3567-3584.	6.6	507
10	Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods, 2021, 18, 747-756.	19.0	403
11	The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 2014, 46, 1034-1038.	21.4	391
12	Protein degradation – an alternative respiratory substrate for stressed plants. Trends in Plant Science, 2011, 16, 489-498.	8.8	367
13	Comprehensive Flavonol Profiling and Transcriptome Coexpression Analysis Leading to Decoding Gene–Metabolite Correlations in <i>Arabidopsis</i> Analysis Cell, 2008, 20, 2160-2176.	6.6	347
14	Arabidopsis SLIM1 Is a Central Transcriptional Regulator of Plant Sulfur Response and Metabolism. Plant Cell, 2006, 18, 3235-3251.	6.6	337
15	Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. Journal of Experimental Botany, 2017, 68, 4013-4028.	4.8	328
16	Recommendations for Reporting Metabolite Data. Plant Cell, 2011, 23, 2477-2482.	6.6	326
17	Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2655-62.	7.1	325
18	Systems Biology of Tomato Fruit Development: Combined Transcript, Protein, and Metabolite Analysis of Tomato Transcription Factor (<i>nor, rin</i>) and Ethylene Receptor (<i>Nr</i>) Mutants Reveals Novel Regulatory Interactions Â. Plant Physiology, 2011, 157, 405-425.	4.8	303

#	Article	IF	Citations
19	Metabolic Fluxes in an Illuminated <i>Arabidopsis</i> Rosette Â. Plant Cell, 2013, 25, 694-714.	6.6	303
20	Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nature Communications, 2015, 6, 8635.	12.8	303
21	Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance. PLoS Pathogens, 2013, 9, e1003221.	4.7	299
22	Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnology Journal, 2009, 7, 631-644.	8.3	298
23	PlaNet: Combined Sequence and Expression Comparisons across Plant Networks Derived from Seven Species Â. Plant Cell, 2011, 23, 895-910.	6.6	297
24	Identification of the 2-Hydroxyglutarate and Isovaleryl-CoA Dehydrogenases as Alternative Electron Donors Linking Lysine Catabolism to the Electron Transport Chain of $\langle i \rangle$ Arabidopsis $\langle j \rangle$ Mitochondria Â. Plant Cell, 2010, 22, 1549-1563.	6.6	296
25	Shikimate and Phenylalanine Biosynthesis in the Green Lineage. Frontiers in Plant Science, 2013, 4, 62.	3.6	288
26	Analysis of PRODUCTION OF FLAVONOL GLYCOSIDESâ€dependent flavonol glycoside accumulation in <i>Arabidopsis thaliana ⟨i⟩ plants reveals MYB11â€, MYB12†and MYB111†independent flavonol glycoside accumulation. New Phytologist, 2010, 188, 985-1000.</i>	7.3	285
27	Comprehensive Dissection of Spatiotemporal Metabolic Shifts in Primary, Secondary, and Lipid Metabolism during Developmental Senescence in Arabidopsis Â. Plant Physiology, 2013, 162, 1290-1310.	4.8	278
28	AtABCG29 Is a Monolignol Transporter Involved in Lignin Biosynthesis. Current Biology, 2012, 22, 1207-1212.	3.9	265
29	Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UVâ€B light. Plant Journal, 2011, 67, 354-369.	5.7	249
30	Identification of a Flavonol 7-O-Rhamnosyltransferase Gene Determining Flavonoid Pattern in Arabidopsis by Transcriptome Coexpression Analysis and Reverse Genetics. Journal of Biological Chemistry, 2007, 282, 14932-14941.	3.4	236
31	Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nature Communications, 2017, 8, 1975.	12.8	233
32	The evolution of phenylpropanoid metabolism in the green lineage. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 123-152.	5 . 2	228
33	Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nature Biotechnology, 2014, 32, 1158-1165.	17.5	228
34	Antisense Inhibition of the Iron-Sulphur Subunit of Succinate Dehydrogenase Enhances Photosynthesis and Growth in Tomato via an Organic Acid–Mediated Effect on Stomatal Aperture Â. Plant Cell, 2011, 23, 600-627.	6.6	221
35	Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Scientific Reports, 2016, 6, 34027.	3.3	209
36	Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nature Protocols, 2010, 5, 1210-1227.	12.0	202

#	Article	IF	CITATIONS
37	Tissue- and Cell-Type Specific Transcriptome Profiling of Expanding Tomato Fruit Provides Insights into Metabolic and Regulatory Specialization and Cuticle Formation Â. Plant Cell, 2011, 23, 3893-3910.	6.6	193
38	Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nature Communications, 2018, 9, 4680.	12.8	189
39	Identification and Mode of Inheritance of Quantitative Trait Loci for Secondary Metabolite Abundance in Tomato. Plant Cell, 2015, 27, 485-512.	6.6	188
40	Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1392-400.	7.1	179
41	Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cellular and Molecular Life Sciences, 2013, 70, 689-709.	5.4	168
42	Global Analysis of the Role of Autophagy in Cellular Metabolism and Energy Homeostasis in Arabidopsis Seedlings under Carbon Starvation. Plant Cell, 2015, 27, 306-322.	6.6	166
43	The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiology, 2015, 169, pp.00605.2015.	4.8	164
44	The Metabolic Response of Arabidopsis Roots to Oxidative Stress is Distinct from that of Heterotrophic Cells in Culture and Highlights a Complex Relationship between the Levels of Transcripts, Metabolites, and Flux. Molecular Plant, 2009, 2, 390-406.	8.3	155
45	Tomato Fruit Photosynthesis Is Seemingly Unimportant in Primary Metabolism and Ripening But Plays a Considerable Role in Seed Development À Â. Plant Physiology, 2011, 157, 1650-1663.	4.8	150
46	PRIMe: a Web site that assembles tools for metabolomics and transcriptomics. In Silico Biology, 2008, 8, 339-45.	0.9	149
47	Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae. Nature Communications, 2016, 7, 12399.	12.8	145
48	Web-based resources for mass-spectrometry-based metabolomics: A user's guide. Phytochemistry, 2009, 70, 450-456.	2.9	140
49	Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Scientific Reports, 2014, 4, 5067.	3.3	129
50	Sulfur deficiency–induced repressor proteins optimize glucosinolate biosynthesis in plants. Science Advances, 2016, 2, e1601087.	10.3	127
51	Natural variation in flavonol and anthocyanin metabolism during cold acclimation in <scp><i>A</i></scp> <i>rabidopsis thaliana</i> accessions. Plant, Cell and Environment, 2015, 38, 1658-1672.	5.7	126
52	Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Current Opinion in Plant Biology, 2020, 55, 93-99.	7.1	119
53	Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant Journal, 2011, 68, 999-1013.	5.7	118
54	The Genetics of Plant Metabolism. Annual Review of Genetics, 2017, 51, 287-310.	7.6	118

#	Article	IF	CITATIONS
55	Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana. BMC Systems Biology, 2007, 1, 53.	3.0	116
56	Mapping the Arabidopsis Metabolic Landscape by Untargeted Metabolomics at Different Environmental Conditions. Molecular Plant, 2018, 11, 118-134.	8.3	116
57	Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations. PLoS Genetics, 2012, 8, e1002612.	3.5	115
58	Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry, 2009, 70, 1017-1029.	2.9	111
59	DELLA-Interacting SWI3C Core Subunit of Switch/Sucrose Nonfermenting Chromatin Remodeling Complex Modulates Gibberellin Responses and Hormonal Cross Talk in Arabidopsis. Plant Physiology, 2013, 163, 305-317.	4.8	98
60	Identification of Genes in the Phenylalanine Metabolic Pathway by Ectopic Expression of a MYB Transcription Factor in Tomato Fruit. Plant Cell, 2011, 23, 2738-2753.	6.6	97
61	The Role of SWI/SNF Chromatin Remodeling Complexes in Hormone Crosstalk. Trends in Plant Science, 2016, 21, 594-608.	8.8	95
62	Toward the Storage Metabolome: Profiling the Barley Vacuole Â. Plant Physiology, 2011, 157, 1469-1482.	4.8	92
63	On the regulation and function of secondary metabolism during fruit development and ripening. Journal of Experimental Botany, 2013, 65, 4599-4611.	4.8	92
64	2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis. Frontiers in Plant Science, 2014, 5, 552.	3.6	91
65	Photorespiration Is Crucial for Dynamic Response of Photosynthetic Metabolism and Stomatal Movement to Altered CO 2 Availability. Molecular Plant, 2017, 10, 47-61.	8.3	91
66	Phytochemical genomics in Arabidopsis thaliana: A case study for functional identification of flavonoid biosynthesis genes. Pure and Applied Chemistry, 2007, 79, 811-823.	1.9	88
67	Antisense Inhibition of the 2-Oxoglutarate Dehydrogenase Complex in Tomato Demonstrates Its Importance for Plant Respiration and during Leaf Senescence and Fruit Maturation. Plant Cell, 2012, 24, 2328-2351.	6.6	88
68	Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants. Plant Cell, 2013, 25, 2253-2264.	6.6	86
69	Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants. Plant Journal, 2010, 62, 549-559.	5.7	85
70	Characterization of the Branched-Chain Amino Acid Aminotransferase Enzyme Family in Tomato Â. Plant Physiology, 2010, 153, 925-936.	4.8	80
71	A flavonoid 3â€ <i>O</i> àê€glucoside:2″â€ <i>O</i> àê€glucosyltransferase responsible for terminal modification of pollenâ€specific flavonols in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2014, 79, 769-782.	5.7	79
72	Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics, 2015, 11, 81-97.	3.0	77

#	Article	IF	Citations
73	Pleiotropic physiological consequences of feedback-insensitive phenylalanine biosynthesis in Arabidopsis thaliana. Plant Journal, 2010, 63, 823-835.	5 . 7	69
74	BRAHMA ATPase of the SWI/SNF Chromatin Remodeling Complex Acts as a Positive Regulator of Gibberellin-Mediated Responses in Arabidopsis. PLoS ONE, 2013, 8, e58588.	2.5	69
75	Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6. Journal of Experimental Botany, 2016, 67, 1505-1517.	4.8	67
76	Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis. Plant Physiology, 2015, 169, 1027-1041.	4.8	66
77	Metabolomics-Inspired Insight into Developmental, Environmental and Genetic Aspects of Tomato Fruit Chemical Composition and Quality: Fig. 1. Plant and Cell Physiology, 2015, 56, 1681-1696.	3.1	66
78	Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance. Nature Plants, 2020, 6, 1447-1454.	9.3	66
79	Transcription factor <scp>RD</scp> 26 is a key regulator of metabolic reprogramming during darkâ€induced senescence. New Phytologist, 2018, 218, 1543-1557.	7.3	65
80	Identification of Conserved and Diverse Metabolic Shifts during Rice Grain Development. Scientific Reports, 2016, 6, 20942.	3.3	64
81	FamNet: A Framework to Identify Multiplied Modules Driving Pathway Expansion in Plants. Plant Physiology, 2016, 170, 1878-1894.	4.8	63
82	Ectopic expression of snapdragon transcription factors facilitates the identification of genes encoding enzymes of anthocyanin decoration in tomato. Plant Journal, 2015, 83, 686-704.	5.7	62
83	Combining Quantitative Genetics Approaches with Regulatory Network Analysis to Dissect the Complex Metabolism of the Maize Kernel. Plant Physiology, 2016, 170, 136-146.	4.8	62
84	A protein–protein interaction network linking the energy-sensor kinase SnRK1 to multiple signaling pathways in Arabidopsis thaliana. Current Plant Biology, 2016, 5, 36-44.	4.7	61
85	Metabolomicsâ€essisted refinement of the pathways of steroidal glycoalkaloid biosynthesis in the tomato clade. Journal of Integrative Plant Biology, 2014, 56, 864-875.	8.5	60
86	Genomics-based strategies for the use of natural variation in the improvement of crop metabolism. Plant Science, 2016, 242, 47-64.	3.6	60
87	Balancing of B ₆ Vitamers Is Essential for Plant Development and Metabolism in Arabidopsis. Plant Cell, 2016, 28, 439-453.	6.6	60
88	Metabolic and miRNA Profiling of TMV Infected Plants Reveals Biphasic Temporal Changes. PLoS ONE, 2011, 6, e28466.	2.5	59
89	Flux profiling of photosynthetic carbon metabolism in intact plants. Nature Protocols, 2014, 9, 1803-1824.	12.0	59
90	From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web resources for mass spectral plant metabolomics. GigaScience, 2017, 6, 1-20.	6.4	59

#	Article	IF	Citations
91	A MYB Triad Controls Primary and Phenylpropanoid Metabolites for Pollen Coat Patterning. Plant Physiology, 2019, 180, 87-108.	4.8	59
92	An Overview of Compounds Derived from the Shikimate and Phenylpropanoid Pathways and Their Medicinal Importance. Mini-Reviews in Medicinal Chemistry, 2017, 17, 1013-1027.	2.4	58
93	Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex. Molecular Plant, 2020, 13, 1027-1046.	8.3	56
94	Transcriptional and metabolic programs following exposure of plants to UV-B irradiation. Plant Signaling and Behavior, 2011, 6, 1987-1992.	2.4	54
95	Liquid chromatography highâ€resolution mass spectrometry for fatty acid profiling. Plant Journal, 2015, 81, 529-536.	5.7	54
96	Integrating transcriptomic and metabolomic analysis to understand natural leaf senescence in sunflower. Plant Biotechnology Journal, 2016, 14, 719-734.	8.3	53
97	Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida. Nature Communications, 2019, 10, 737.	12.8	52
98	Co-expression and co-responses: within and beyond transcription. Frontiers in Plant Science, 2012, 3, 248.	3.6	51
99	Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.). Plant Molecular Biology, 2017, 94, 549-564.	3.9	51
100	Conserved Changes in the Dynamics of Metabolic Processes during Fruit Development and Ripening across Species \hat{A} \hat{A} . Plant Physiology, 2014, 164, 55-68.	4.8	50
101	The SAL-PAP Chloroplast Retrograde Pathway Contributes to Plant Immunity by Regulating Glucosinolate Pathway and Phytohormone Signaling. Molecular Plant-Microbe Interactions, 2017, 30, 829-841.	2.6	50
102	Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis Â. Plant Physiology, 2014, 165, 948-961.	4.8	49
103	Alterations in primary and secondary metabolism in <i>Vitis vinifera</i> a€~MalvasÃa de Banyalbufar' upon infection withAGrapevine leafrollâ€associated virus 3. Physiologia Plantarum, 2016, 157, 442-452.	5.2	49
104	On the natural diversity of phenylacylated-flavonoid and their in planta function under conditions of stress. Phytochemistry Reviews, 2018, 17, 279-290.	6.5	48
105	Genome-enabled plant metabolomics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 966, 7-20.	2.3	47
106	Canalization of Tomato Fruit Metabolism. Plant Cell, 2017, 29, 2753-2765.	6.6	47
107	The polyketide synthase OsPKS2 is essential for pollen exine and Ubisch body patterning in rice. Journal of Integrative Plant Biology, 2017, 59, 612-628.	8.5	47
108	Leveraging Natural Variance towards Enhanced Understanding of Phytochemical Sunscreens. Trends in Plant Science, 2017, 22, 308-315.	8.8	46

#	Article	IF	Citations
109	Vacuolar Chloride Fluxes Impact Ion content and Distribution during Early Salinity Stress. Plant Physiology, 2016, 172, pp.00183.2016.	4.8	45
110	Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism. Nature Communications, 2016, 7, 13026.	12.8	44
111	Insect egg deposition renders plant defence against hatching larvae more effective in a salicylic acidâ€dependent manner. Plant, Cell and Environment, 2019, 42, 1019-1032.	5.7	44
112	Manipulation of ZDS in tomato exposes carotenoid―and ABAâ€specific effects on fruit development and ripening. Plant Biotechnology Journal, 2020, 18, 2210-2224.	8.3	44
113	Enhanced radical scavenging activity of genetically modified Arabidopsis seeds. Biotechnology Letters, 2005, 27, 297-303.	2.2	41
114	Integrative Approaches to Enhance Understanding of Plant Metabolic Pathway Structure and Regulation. Plant Physiology, 2015, 169, 1499-1511.	4.8	40
115	Analysis of a Range of Catabolic Mutants Provides Evidence That Phytanoyl-Coenzyme A Does Not Act as a Substrate of the Electron-Transfer Flavoprotein/Electron-Transfer Flavoprotein:Ubiquinone Oxidoreductase Complex in Arabidopsis during Dark-Induced Senescence Â. Plant Physiology, 2011, 157, 55-69.	4.8	39
116	In High-Light-Acclimated Coffee Plants the Metabolic Machinery Is Adjusted to Avoid Oxidative Stress Rather than to Benefit from Extra Light Enhancement in Photosynthetic Yield. PLoS ONE, 2014, 9, e94862.	2.5	39
117	Expression Atlas of <i>Selaginella moellendorffii</i> Provides Insights into the Evolution of Vasculature, Secondary Metabolism, and Roots. Plant Cell, 2020, 32, 853-870.	6.6	39
118	Integrative field scale phenotyping for investigating metabolic components of water stress within a vineyard. Plant Methods, 2017, 13, 90.	4.3	37
119	Activation of <i><scp>R</scp></i> â€mediated innate immunity and disease susceptibility is affected by mutations in a cytosolic <i><scp>O</scp></i> â€acetylserine (thiol) lyase in <scp>A</scp> rabidopsis. Plant Journal, 2013, 73, 118-130.	5.7	36
120	Enhancement of vitamin B ₆ levels in rice expressing Arabidopsis vitamin B ₆ biosynthesis <i>de novo</i> genes. Plant Journal, 2019, 99, 1047-1065.	5.7	36
121	Differential metabolic and coexpression networks of plant metabolism. Trends in Plant Science, 2015, 20, 266-268.	8.8	35
122	Glutaredoxin GRXS17 Associates with the Cytosolic Iron-Sulfur Cluster Assembly Pathway. Plant Physiology, 2016, 172, pp.00261.2016.	4.8	35
123	The Acetate Pathway Supports Flavonoid and Lipid Biosynthesis in Arabidopsis. Plant Physiology, 2020, 182, 857-869.	4.8	35
124	An Oryza-specific hydroxycinnamoyl tyramine gene cluster contributes to enhanced disease resistance. Science Bulletin, 2021, 66, 2369-2380.	9.0	35
125	Integrated genomics-based mapping reveals the genetics underlying maize flavonoid biosynthesis. BMC Plant Biology, 2017, 17, 17.	3.6	34
126	From models to crop species: caveats and solutions for translational metabolomics. Frontiers in Plant Science, 2011, 2, 61.	3.6	33

#	Article	IF	CITATIONS
127	Targeted LC-MS Analysis for Plant Secondary Metabolites. Methods in Molecular Biology, 2018, 1778, 171-181.	0.9	33
128	Multiâ€tissue integration of transcriptomic and specialized metabolite profiling provides tools for assessing the common bean (<i>Phaseolus vulgaris</i>) metabolome. Plant Journal, 2019, 97, 1132-1153.	5.7	33
129	Quantitative trait loci analysis of seedâ€specialized metabolites reveals seedâ€specific flavonols and differential regulation of glycoalkaloid content in tomato. Plant Journal, 2020, 103, 2007-2024.	5.7	32
130	Phosphonate Analogs of 2-Oxoglutarate Perturb Metabolism and Gene Expression in Illuminated Arabidopsis Leaves. Frontiers in Plant Science, 2012, 3, 114.	3.6	30
131	Profiling of primary metabolites and flavonols in leaves of two table grape varieties collected from semiarid and temperate regions. Phytochemistry, 2015, 117, 444-455.	2.9	30
132	Phytochrome A and B Regulate Primary Metabolism in Arabidopsis Leaves in Response to Light. Frontiers in Plant Science, 2017, 8, 1394.	3.6	30
133	Genetic Manipulation of Transcriptional Regulators Alters Nicotine Biosynthesis in Tobacco. Plant and Cell Physiology, 2020, 61, 1041-1053.	3.1	30
134	The Mitochondrial Thioredoxin System Contributes to the Metabolic Responses Under Drought Episodes in Arabidopsis. Plant and Cell Physiology, 2019, 60, 213-229.	3.1	26
135	Extended darkness induces internal turnover of glucosinolates in Arabidopsis thaliana leaves. PLoS ONE, 2018, 13, e0202153.	2.5	24
136	The <i>genomes uncoupled</i> -dependent signalling pathway coordinates plastid biogenesis with the synthesis of anthocyanins. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190403.	4.0	24
137	Plastic, fantastic! Phenotypic variance in the transcriptional landscape of the grape berry. Genome Biology, 2013, 14, 119.	8.8	22
138	Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis. Plant Molecular Biology, 2015, 89, 319-338.	3.9	21
139	Plasmodium Para-Aminobenzoate Synthesis and Salvage Resolve Avoidance of Folate Competition and Adaptation to Host Diet. Cell Reports, 2019, 26, 356-363.e4.	6.4	21
140	Analysis of metabolic alterations in <i>Arabidopsis</i> following changes in the carbon dioxide and oxygen partial pressures. Journal of Integrative Plant Biology, 2014, 56, 941-959.	8.5	20
141	Dealing with the sulfur part of cysteine: four enzymatic steps degrade <scp>l</scp> â€eysteine to pyruvate and thiosulfate in Arabidopsis mitochondria. Physiologia Plantarum, 2016, 157, 352-366.	5.2	20
142	Characterization of ubiquitin ligase SIATL31 and proteomic analysis of 14-3-3 targets in tomato fruit tissue (Solanum lycopersicum L.). Journal of Proteomics, 2016, 143, 254-264.	2.4	20
143	Salt-stress secondary metabolite signatures involved in the ability of Casuarina glauca to mitigate oxidative stress. Environmental and Experimental Botany, 2019, 166, 103808.	4.2	20
144	Sulfur deficiency-induced genes affect seed protein accumulation and composition under sulfate deprivation. Plant Physiology, 2021, 187, 2419-2434.	4.8	20

#	Article	IF	Citations
145	Kingdom-wide analysis of the evolution of the plant type III polyketide synthase superfamily. Plant Physiology, 2021, 185, 857-875.	4.8	20
146	Comprehensive Metabolomics Studies of Plant Developmental Senescence. Methods in Molecular Biology, 2018, 1744, 339-358.	0.9	19
147	The Hot and the Colorful: Understanding the Metabolism, Genetics and Evolution of Consumer Preferred Metabolic Traits in Pepper and Related Species. Critical Reviews in Plant Sciences, 2019, 38, 339-381.	5.7	19
148	Metabolomic markers and physiological adaptations for high phosphate utilization efficiency in rice. Plant, Cell and Environment, 2020, 43, 2066-2079.	5.7	19
149	Cross-Species Comparison of Fruit-Metabolomics to Elucidate Metabolic Regulation of Fruit Polyphenolics Among Solanaceous Crops. Metabolites, 2020, 10, 209.	2.9	19
150	Specialized Metabolites of the Flavonol Class Mediate Root Phototropism and Growth. Molecular Plant, 2016, 9, 1554-1555.	8.3	18
151	Metabolome and Lipidome Profiles of Populus $ ilde{A}-$ canescens Twig Tissues During Annual Growth Show Phospholipid-Linked Storage and Mobilization of C, N, and S. Frontiers in Plant Science, 2018, 9, 1292.	3.6	18
152	Analysis of Short-Term Metabolic Alterations in Arabidopsis Following Changes in the Prevailing Environmental Conditions. Molecular Plant, 2014, 7, 893-911.	8.3	17
153	Co-regulation of Clustered and Neo-functionalized Genes in Plant-Specialized Metabolism. Plants, 2020, 9, 622.	3.5	17
154	<scp>AtGH3</scp> .10 is another jasmonic acidâ€amido synthetase in <i>Arabidopsis thaliana</i> Journal, 2022, 110, 1082-1096.	5.7	17
155	Tissue specificity and differential expression of transcription factors in tomato provide hints of unique regulatory networks during fruit ripening. Plant Signaling and Behavior, 2012, 7, 1639-1647.	2.4	16
156	Analysis of the Interface between Primary and Secondary Metabolism in Catharanthus roseus Cell Cultures Using 13C-Stable Isotope Feeding and Coupled Mass Spectrometry. Molecular Plant, 2013, 6, 581-584.	8.3	16
157	Integrated transcriptomic and metabolomic analysis shows that disturbances in metabolism of tumor cells contribute to poor survival of RCC patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 744-752.	3.8	16
158	Diversity of Chemical Structures and Biosynthesis of Polyphenols in Nut-Bearing Species. Frontiers in Plant Science, 2021, 12, 642581.	3.6	16
159	Assessing Dynamic Changes of Taste-Related Primary Metabolism During Ripening of Durian Pulp Using Metabolomic and Transcriptomic Analyses. Frontiers in Plant Science, 2021, 12, 687799.	3.6	16
160	Non-aqueous fractionation revealed changing subcellular metabolite distribution during apple fruit development. Horticulture Research, 2019, 6, 98.	6.3	15
161	The natural variance of the Arabidopsis floral secondary metabolites. Scientific Data, 2018, 5, 180051.	5.3	14
162	Natural Variation among Arabidopsis Accessions in the Regulation of Flavonoid Metabolism and Stress Gene Expression by Combined UV Radiation and Cold. Plant and Cell Physiology, 2021, 62, 502-514.	3.1	14

#	Article	IF	Citations
163	Overexpression of the <i>Arabidopsis thaliana </i> signalling peptide TAXIMIN1 affects lateral organ development. Journal of Experimental Botany, 2015, 66, 5337-5349.	4.8	13
164	Annotation of Plant Gene Function via Combined Genomics, Metabolomics and Informatics. Journal of Visualized Experiments, 2012, , e3487.	0.3	12
165	Understanding the function and regulation of plant secondary metabolism through metabolomics approaches. Theoretical and Experimental Plant Physiology, 2019, 31, 127-138.	2.4	11
166	Diversification of Chemical Structures of Methoxylated Flavonoids and Genes Encoding Flavonoid-O-Methyltransferases. Plants, 2022, 11, 564.	3.5	11
167	The Effect of Single and Multiple SERAT Mutants on Serine and Sulfur Metabolism. Frontiers in Plant Science, 2018, 9, 702.	3.6	9
168	Analysis of Kinetic Labeling of Amino Acids and Organic Acids by GC-MS. Methods in Molecular Biology, 2014, 1090, 107-119.	0.9	9
169	A Chimeric TGA Repressor Slows Down Fruit Maturation and Ripening in Tomato. Plant and Cell Physiology, 2022, 63, 120-134.	3.1	9
170	A comparative transcriptomics and eQTL approach identifies <i>SlWD40</i> as a tomato fruit ripening regulator. Plant Physiology, 2022, 190, 250-266.	4.8	9
171	Biosynthesis of the Essential Respiratory Cofactor Ubiquinone from Phenylalanine in Plants. Molecular Plant, 2014, 7, 1403-1405.	8.3	8
172	Location, location, location – no more! The unravelling of chromatin remodeling regulatory aspects of plant metabolic gene clusters. New Phytologist, 2015, 205, 458-460.	7.3	8
173	The Role of Persulfide Metabolism During Arabidopsis Seed Development Under Light and Dark Conditions. Frontiers in Plant Science, 2018, 9, 1381.	3.6	8
174	Performance of Arabidopsis thaliana under different light qualities: comparison of light-emitting diodes to fluorescent lamp. Functional Plant Biology, 2017, 44, 727.	2.1	6
175	Dissection of flag leaf metabolic shifts and their relationship with those occurring simultaneously in developing seed by application of non-targeted metabolomics. PLoS ONE, 2020, 15, e0227577.	2.5	6
176	Lignin, mitochondrial family, and photorespiratory transporter classification as case studies in using co-expression, co-response, and protein locations to aid in identifying transport functions. Frontiers in Plant Science, 2014, 5, 75.	3.6	4
177	Transcript and Metabolite Profiling for the Evaluation of Tobacco Tree and Poplar as Feedstock for the Bio-based Industry. Journal of Visualized Experiments, 2014, , .	0.3	3
178	13CO2 Labeling and Mass Spectral Analysis of Photorespiration. Methods in Molecular Biology, 2017, 1653, 157-166.	0.9	3
179	A cross-kingdom history. ELife, 2015, 4, .	6.0	3
180	Carbon Atomic Survey for Identification of Selected Metabolic Fluxes. Methods in Molecular Biology, 2018, 1778, 59-67.	0.9	2

Takayuki Tohge

#	Article	IF	CITATIONS
181	From Fruit Omics to Fruiting Omics: Systematic Studies of Tomato Fruiting by Metabolic Networks. Molecular Plant, 2020, 13, 1114-1116.	8.3	2
182	Sugarcane cell suspension reveals major metabolic changes under different nitrogen starvation regimes. Bragantia, 0, 80, .	1.3	2
183	Identification of Genes Involved in Anthocyanin Accumulation by Integrated Analysis of Metabolome and Transcriptome in Pap1-Overexpressing Arabidopsis Plants., 2007,, 159-168.		2
184	High-energy-level metabolism and transport occur at the transition from closed to open flowers. Plant Physiology, 2022, 190, 319-339.	4.8	2
185	Cross-Species Metabolic Profiling of Floral Specialized Metabolism Facilitates Understanding of Evolutional Aspects of Metabolism Among Brassicaceae Species. Frontiers in Plant Science, 2021, 12, 640141.	3.6	1
186	Title is missing!. , 2020, 15, e0227577.		0
187	Title is missing!. , 2020, 15, e0227577.		0
188	Title is missing!. , 2020, 15, e0227577.		0
189	Title is missing!. , 2020, 15, e0227577.		O