Rainer Saffrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2656669/publications.pdf

Version: 2024-02-01

79 papers 5,036 citations

33 h-index 95266 68 g-index

80 all docs 80 docs citations

times ranked

80

7050 citing authors

#	Article	IF	CITATIONS
1	Multipotent mesenchymal stromal cells are sensitive to thermic stress – potential implications for therapeutic hyperthermia. International Journal of Hyperthermia, 2020, 37, 430-441.	2.5	7
2	Effect of Increased Lactate Dehydrogenase A Activity and Aerobic Glycolysis on the Proinflammatory Profile of Autoimmune CD8+ T Cells in Rheumatoid Arthritis. Arthritis and Rheumatology, 2020, 72, 2050-2064.	5 . 6	48
3	Mesenchymal stem cells preserve their stem cell traits after exposure to antimetabolite chemotherapy. Stem Cell Research, 2019, 40, 101536.	0.7	18
4	Human mesenchymal stem cells are resistant to UV-B irradiation. Scientific Reports, 2019, 9, 20000.	3.3	11
5	Dynamic cellular phenotyping defines specific mobilization mechanisms of human hematopoietic stem and progenitor cells induced by SDF1α versus synthetic agents. Scientific Reports, 2018, 8, 1841.	3.3	7
6	The Radiation Resistance of Human Multipotent Mesenchymal Stromal Cells Is Independent of Their Tissue of Origin. International Journal of Radiation Oncology Biology Physics, 2018, 100, 1259-1269.	0.8	26
7	Human mesenchymal stem cells lose their functional properties after paclitaxel treatment. Scientific Reports, 2018, 8, 312.	3. 3	32
8	The current understanding of mesenchymal stem cells as potential attenuators of chemotherapyâ€induced toxicity. International Journal of Cancer, 2018, 143, 2628-2639.	5.1	31
9	08.12â€Activated human b cells modulate cytokine production and differentiation of multipotent mesenchymal stromal cells. , 2017, , .		0
10	Cisplatin radiosensitizes radioresistant human mesenchymal stem cells. Oncotarget, 2017, 8, 87809-87820.	1.8	14
11	Mesenchymal stem cells are sensitive to bleomycin treatment. Scientific Reports, 2016, 6, 26645.	3.3	46
12	Mesenchymal stem cells maintain their defining stem cell characteristics after treatment with cisplatin. Scientific Reports, 2016, 6, 20035.	3.3	33
13	Evaluation of GMP-compliant culture media for inÂvitro expansion of humanÂbone marrow mesenchymal stromal cells. Experimental Hematology, 2016, 44, 508-518.	0.4	28
14	Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells. Cell and Tissue Research, 2016, 364, 573-584.	2.9	30
15	Mesenchymal stem cells exhibit resistance to topoisomerase inhibition. Cancer Letters, 2016, 374, 75-84.	7.2	21
16	Novel activating mutation of human calcium-sensing receptor in a family with autosomal dominant hypocalcaemia. Molecular and Cellular Endocrinology, 2015, 407, 18-25.	3.2	11
17	Standardization of Good Manufacturing Practice–compliant production of bone marrow–derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy, 2015, 17, 128-139.	0.7	118
18	Quantifying Adhesion Mechanisms and Dynamics of Human Hematopoietic Stem and Progenitor Cells. Scientific Reports, 2015, 5, 9370.	3.3	29

#	Article	lF	Citations
19	Mesenchymal stem cells are resistant to carbon ion radiotherapy. Oncotarget, 2015, 6, 2076-2087.	1.8	39
20	Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget, 2015, 6, 19366-19380.	1.8	72
21	Functional potentials of human hematopoietic progenitor cells are maintained by mesenchymal stromal cells and not impaired by plerixafor. Cytotherapy, 2014, 16, 111-121.	0.7	19
22	Plerixafor induces the rapid and transient release of stromal cell-derived factor-1 alpha from human mesenchymal stromal cells and influences the migration behavior of human hematopoietic progenitor cells. Cell and Tissue Research, 2014, 355, 315-326.	2.9	14
23	Mesenchymal stem cells are sensitive to treatment with kinase inhibitors and ionizing radiation. Strahlentherapie Und Onkologie, 2014, 190, 1037-1045.	2.0	13
24	Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation. International Journal of Radiation Oncology Biology Physics, 2013, 87, 1171-1178.	0.8	70
25	Understanding The Marrow Niche: Advanced 3D Model System Allows Functional Analysis Of The Interaction With Human Hematopoietic Progenitor Cells. Blood, 2013, 122, 2462-2462.	1.4	0
26	Modeling SDF-1–induced mobilization in leukemia cell lines. Experimental Hematology, 2012, 40, 666-674.	0.4	19
27	Heterogeneity of leukemia stem cell candidates at diagnosis of acute myeloid leukemia and their clinical significance. Experimental Hematology, 2012, 40, 155-165.e1.	0.4	34
28	Characterization of hematopoietic stem cell subsets from patients with multiple myeloma after mobilization with plerixafor. Cytotherapy, 2011, 13, 459-466.	0.7	32
29	KATP channels in mesenchymal stromal stem cells: Strong up-regulation of Kir6.2 subunits upon osteogenic differentiation. Tissue and Cell, 2011, 43, 331-336.	2.2	22
30	Cep63 Recruits Cdk1 to the Centrosome: Implications for Regulation of Mitotic Entry, Centrosome Amplification, and Genome Maintenance. Cancer Research, 2011, 71, 2129-2139.	0.9	52
31	Novel 3D-Model for the Hematopoietic Stem Cell Niche Using MSC in a KITChip Based Bioreactor. Blood, 2011, 118, 1331-1331.	1.4	0
32	Plerixafor Abrogates the Supportive Function of MSC for Self-Renewal of Human Hematopoietic Stem Cells,. Blood, 2011, 118, 3408-3408.	1.4	0
33	N-Cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells. Stem Cell Research, 2010, 4, 129-139.	0.7	66
34	Coâ€culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. Journal of Cellular and Molecular Medicine, 2010, 14, 337-350.	3.6	146
35	RhoA Regulates Peroxisome Association to Microtubules and the Actin Cytoskeleton. PLoS ONE, 2010, 5, e13886.	2.5	30
36	Frequency of Leukemia Stem Cell Candidates Predicts Refractoriness to Conventional Chemotherapy and Adverse Clinical Outcome. Blood, 2010, 116, 2160-2160.	1.4	2

#	Article	IF	CITATIONS
37	Cellular Interaction Between Human Mesenchymal Stem Cells and Hematopoietic Stem Cells in 2D- and 3D-Culture-Systems Blood, 2009, 114, 1442-1442.	1.4	2
38	Molecular Determinants and Functional Characteristics of Leukemic Stem Cells and Their Interaction with the Niche Blood, 2009, 114, 1427-1427.	1.4	0
39	VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. British Journal of Cancer, 2008, 99, 622-631.	6.4	364
40	The Stromal Activity of Mesenchymal Stromal Cells. Transfusion Medicine and Hemotherapy, 2008, 35, 185-193.	1.6	33
41	Adhesion of Human Hematopoietic Progenitor Cells to Mesenchymal Stromal Cells Involves CD44. Cells Tissues Organs, 2008, 188, 160-169.	2.3	45
42	Replicative Senescence of Mesenchymal Stem Cells: A Continuous and Organized Process. PLoS ONE, 2008, 3, e2213.	2.5	939
43	Human Hematopoietic Stem Cells and Leukemic Cells Form Cadherin-Catenin Based Junctional Complexes with Mesenchymal Stromal Cells. Blood, 2008, 112, 1367-1367.	1.4	1
44	The Many Facets of SDF- $1\hat{l}_{\pm}$, CXCR4 Agonists and Antagonists on Hematopoietic Progenitor Cells. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-10.	3.0	37
45	Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cellâ°cell interaction. Experimental Hematology, 2007, 35, 314-325.	0.4	116
46	Primitive and committed human hematopoietic progenitor cells interact with primary murine neural cells and are induced to undergo self-renewing cell divisions. Experimental Hematology, 2007, 35, 1858-1871.	0.4	8
47	Human Mesenchymal Stromal Cells Regulate Initial Self-Renewing Divisions of Hematopoietic Progenitor Cells by a \hat{I}^21 -Integrin-Dependent Mechanism. Stem Cells, 2007, 25, 798-806.	3.2	75
48	N-Cadherin and Cadherin-11 Play Vital Roles in the Cell-Cell Contact between Hematopoietic Progenitor Cells and Mesenchymal Stromal Cells Blood, 2007, 110, 1406-1406.	1.4	2
49	Human Hematopoietic and Mesenchymal Stem Cells Are Interconnected by Cadherin-Catenin Based Junctions Blood, 2007, 110, 1410-1410.	1.4	0
50	MEGAP impedes cell migration via regulating actin and microtubule dynamics and focal complex formation. Experimental Cell Research, 2006, 312, 2379-2393.	2.6	51
51	The heterogeneity of human mesenchymal stem cell preparations—Evidence from simultaneous analysis of proteomes and transcriptomes. Experimental Hematology, 2006, 34, 536-548.	0.4	177
52	Characterization of Intercellular Junctional Complexes between Human Hematopoietic and Mesenchymal Stem Cells Blood, 2006, 108, 1396-1396.	1.4	0
53	Hematopoietic Progenitor Cells and Cellular Microenvironment: Behavioral and Molecular Changes upon Interaction. Stem Cells, 2005, 23, 1180-1191.	3.2	81
54	Trimodal Cancer Treatment: Beneficial Effects of Combined Antiangiogenesis, Radiation, and Chemotherapy. Cancer Research, 2005, 65, 3643-3655.	0.9	171

#	Article	IF	CITATIONS
55	Genomic and Proteomic Signatures of Human Mesenchymal Stem Cells Blood, 2005, 106, 2300-2300.	1.4	O
56	Nuclear Export of the Nonenveloped Parvovirus Virion Is Directed by an Unordered Protein Signal Exposed on the Capsid Surface. Journal of Virology, 2004, 78, 10685-10694.	3.4	71
57	Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood, 2004, 104, 675-686.	1.4	126
58	Interaction of Stem Cells and Their Niche: Behavior and Gene Expression Profiles of CD34+/CD38â^' Cells upon Co-Cultivation with AFT024 Blood, 2004, 104, 1281-1281.	1.4	1
59	The DEXD/H-box RNA helicase RHII/Gu is a co-factor for c-Jun-activated transcription. EMBO Journal, 2002, 21, 451-460.	7.8	96
60	Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO Journal, 2002, 21, 6205-6215.	7.8	203
61	Endocytosis of NBD-Sphingolipids in Neurons: Exclusion from Degradative Compartments and Transport to the Golgi Complex. Traffic, 2001, 2, 395-405.	2.7	19
62	Dual function of rhoD in vesicular movement and cell motility. European Journal of Cell Biology, 2001, 80, 391-398.	3.6	31
63	Complex Functions of AP-1 Transcription Factors in Differentiation and Survival of PC12 Cells. Molecular and Cellular Biology, 2001, 21, 4369-4378.	2.3	87
64	Targeting of the 22 kDa integral peroxisomal membrane protein. FEBS Letters, 2000, 471, 23-28.	2.8	43
65	DNA binding of USF is required for specific E-box dependent gene activation in vivo. Oncogene, 1999, 18, 7200-7211.	5.9	26
66	Microinjected glutathione reductase crystals as indicators of the redox status in living cells. FEBS Letters, 1999, 447, 135-138.	2.8	18
67	Microinjection of antibodies to centromere protein CENP-A arrests cells in interphase but does not prevent mitosis. Chromosoma, 1998, 107, 397-405.	2.2	33
68	Structure and dynamics of human interphase chromosome territories in vivo. Human Genetics, 1998, 102, 241-251.	3.8	315
69	Automated Computer-Assisted Microinjection into cultured somatic cells. , 1998, , 31-46.		1
70	Cdk2-dependent phosphorylation of p27 facilitates its Myc-induced release from cyclin E/cdk2 complexes. Oncogene, 1997, 15, 2561-2576.	5.9	158
71	Cytoplasmic flows localize injected oskar RNA in Drosophila oocytes. Current Biology, 1997, 7, 326-337.	3.9	157
72	Cellular Expression and Proteolytic Processing of Presenilin Proteins Is Developmentally Regulated During Neuronal Differentiation. Journal of Neurochemistry, 1997, 69, 2432-2440.	3.9	79

#	Article	IF	CITATIONS
73	Endosome dynamics regulated by a Rho protein. Nature, 1996, 384, 427-432.	27.8	209
74	AURELIA, a program for computer-aided analysis of multidimensional NMR spectra. Journal of Biomolecular NMR, 1995, 6, 255-70.	2.8	98
75	Computer-Automated Capillary Microinjection of Macromolecules into Living Cells., 1994,, 22-29.		2
76	Electroporation of Cells., 1994,, 37-43.		2
77	Pattern Recognition in Two-Dimensional NMR Spectra of Proteins. , 1991, , 175-190.		0
78	Cluster analysis and multiplet pattern recognition in two-dimensional NMR spectra. Journal of Magnetic Resonance, 1990, 89, 543-552.	0.5	7
79	1H-nuclear magnetic resonance studies of the neuropeptide head activator. BBA - Proteins and Proteomics, 1989, 997, 144-153.	2.1	10