List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2655978/publications.pdf Version: 2024-02-01

SEN YIN

#	Article	IF	CITATIONS
1	Lithium–Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angewandte Chemie - International Edition, 2013, 52, 13186-13200.	7.2	2,329
2	Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2012, 134, 18510-18513.	6.6	1,499
3	Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. Journal of the American Chemical Society, 2016, 138, 9385-9388.	6.6	844
4	Nanocarbon Networks for Advanced Rechargeable Lithium Batteries. Accounts of Chemical Research, 2012, 45, 1759-1769.	7.6	533
5	A Highâ€Energy Roomâ€Temperature Sodiumâ€Sulfur Battery. Advanced Materials, 2014, 26, 1261-1265.	11.1	525
6	Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy, 2016, 25, 120-127.	8.2	454
7	Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2017, 56, 753-756.	7.2	449
8	Improving the Electrode Performance of Ge through Ge@C Core–Shell Nanoparticles and Graphene Networks. Journal of the American Chemical Society, 2012, 134, 2512-2515.	6.6	436
9	Photocatalytic CO ₂ Reduction by Carbon-Coated Indium-Oxide Nanobelts. Journal of the American Chemical Society, 2017, 139, 4123-4129.	6.6	434
10	Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. Journal of the American Chemical Society, 2018, 140, 6448-6455.	6.6	427
11	Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. Journal of the American Chemical Society, 2017, 139, 5916-5922.	6.6	410
12	Subzeroâ€Temperature Cathode for a Sodiumâ€ion Battery. Advanced Materials, 2016, 28, 7243-7248.	11.1	406
13	An Advanced Selenium–Carbon Cathode for Rechargeable Lithium–Selenium Batteries. Angewandte Chemie - International Edition, 2013, 52, 8363-8367.	7.2	391
14	Ion-Catalyzed Synthesis of Microporous Hard Carbon Embedded with Expanded Nanographite for Enhanced Lithium/Sodium Storage. Journal of the American Chemical Society, 2016, 138, 14915-14922.	6.6	360
15	Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science, 2020, 370, 192-197.	6.0	336
16	Rechargeable Sodium All-Solid-State Battery. ACS Central Science, 2017, 3, 52-57.	5.3	332
17	Carbon Nanofibers Decorated with Molybdenum Disulfide Nanosheets: Synergistic Lithium Storage and Enhanced Electrochemical Performance. Angewandte Chemie - International Edition, 2014, 53, 11552-11556.	7.2	326
18	Double‣ayer Polymer Electrolyte for Highâ€Voltage Allâ€Solidâ€State Rechargeable Batteries. Advanced Materials, 2019, 31, e1805574.	11.1	321

#	Article	IF	CITATIONS
19	Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects. ACS Energy Letters, 2017, 2, 1385-1394.	8.8	314
20	Cu‣i Nanocable Arrays as Highâ€Rate Anode Materials for Lithiumâ€ion Batteries. Advanced Materials, 2011, 23, 4415-4420.	11.1	283
21	Materials Design for Highâ€&afety Sodiumâ€ion Battery. Advanced Energy Materials, 2021, 11, 2000974.	10.2	282
22	Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chemical Communications, 2012, 48, 10663.	2.2	278
23	Li ₃ N-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C. Nano Letters, 2018, 18, 7414-7418.	4.5	270
24	SiO <i>_x</i> Encapsulated in Graphene Bubble Film: An Ultrastable Liâ€lon Battery Anode. Advanced Materials, 2018, 30, e1707430.	11.1	243
25	Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy and Environmental Science, 2012, 5, 5221-5225.	15.6	241
26	Novel Hydrogel-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Air Cathodes. Nano Letters, 2016, 16, 6516-6522.	4.5	241
27	Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proceedings of the United States of America, 2016, 113, 13313-13317.	3.3	237
28	Liquid K–Na Alloy Anode Enables Dendriteâ€Free Potassium Batteries. Advanced Materials, 2016, 28, 9608-9612.	11.1	235
29	Na _{<i>x</i>} MV(PO ₄) ₃ (M = Mn, Fe, Ni) Structure and Properties for Sodium Extraction. Nano Letters, 2016, 16, 7836-7841.	4.5	229
30	Advanced Porous Carbon Materials for High‣fficient Lithium Metal Anodes. Advanced Energy Materials, 2017, 7, 1700530.	10.2	208
31	Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries. Nano Research, 2017, 10, 1-11.	5.8	208
32	A Highâ€Energyâ€Density Potassium Battery with a Polymerâ€Gel Electrolyte and a Polyaniline Cathode. Angewandte Chemie - International Edition, 2018, 57, 5449-5453.	7.2	205
33	Stabilizing a High-Energy-Density Rechargeable Sodium Battery with a Solid Electrolyte. CheM, 2018, 4, 833-844.	5.8	195
34	Na ₃ MnZr(PO ₄) ₃ : A High-Voltage Cathode for Sodium Batteries. Journal of the American Chemical Society, 2018, 140, 18192-18199.	6.6	195
35	Fluorineâ€Doped Antiperovskite Electrolyte for Allâ€Solidâ€State Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 9965-9968.	7.2	192
36	Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries. Journal of Materials Chemistry A, 2013, 1, 6602.	5.2	189

#	Article	IF	CITATIONS
37	Durable and Efficient Hollow Porous Oxide Spinel Microspheres for Oxygen Reduction. Joule, 2018, 2, 337-348.	11.7	189
38	Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li–S Batteries. Advanced Materials, 2016, 28, 9094-9102.	11.1	184
39	Facile Synthesis of MoS ₂ /Reduced Graphene Oxide@Polyaniline for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 21373-21380.	4.0	183
40	Electrospray Synthesis of Silicon/Carbon Nanoporous Microspheres as Improved Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 14148-14154.	1.5	177
41	Nickel-Doped La _{0.8} Sr _{0.2} Mn _{1â€"<i><i>×</i></i>} Ni _{Ni_{<i>×</i>}O₃ Nanoparticles Containing Abundant Oxygen Vacancies as an Optimized Bifunctional Catalyst for Oxygen Cathode in Rechargeable Lithiumâ€"Air Batteries. ACS Applied Materials & amp; Interfaces, 2016, 8,}	4.0	176
42	Combining Nitrogenâ€Doped Graphene Sheets and MoS ₂ : A Unique Film–Foam–Film Structure for Enhanced Lithium Storage. Angewandte Chemie - International Edition, 2016, 55, 12783-12788.	7.2	172
43	Advances of polymer binders for <scp>siliconâ€based</scp> anodes in high energy density <scp>lithiumâ€ion</scp> batteries. InformaÄnÃ-Materiály, 2021, 3, 460-501.	8.5	163
44	A Plastic–Crystal Electrolyte Interphase for Allâ€Solidâ€State Sodium Batteries. Angewandte Chemie - International Edition, 2017, 56, 5541-5545.	7.2	160
45	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	1.3	158
46	Bridging Interparticle Li ⁺ Conduction in a Soft Ceramic Oxide Electrolyte. Journal of the American Chemical Society, 2021, 143, 5717-5726.	6.6	144
47	Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Research, 2016, 9, 1689-1700.	5.8	141
48	Flexible nitrogen-doped graphene/SnO2 foams promise kinetically stable lithium storage. Nano Energy, 2015, 13, 482-490.	8.2	140
49	The Electrochemistry with Lithium versus Sodium of Selenium Confined To Slit Micropores in Carbon. Nano Letters, 2016, 16, 4560-4568.	4.5	140
50	Exceptional oxygen evolution reactivities on CaCoO ₃ and SrCoO ₃ . Science Advances, 2019, 5, eaav6262.	4.7	132
51	Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review, 2017, 4, 54-70.	4.6	128
52	Insights into the Improved High-Voltage Performance of Li-Incorporated Layered Oxide Cathodes for Sodium-Ion Batteries. CheM, 2018, 4, 2124-2139.	5.8	128
53	Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderate‶emperature Conversion Chemistry. Angewandte Chemie - International Edition, 2020, 59, 12069-12075.	7.2	128
54	High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte. Electrochimica Acta, 2013, 91, 58-61.	2.6	127

#	Article	IF	CITATIONS
55	Rational design of Si@carbon with robust hierarchically porous custard-apple-like structure to boost lithium storage. Nano Energy, 2017, 39, 253-261.	8.2	126
56	Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nature Communications, 2021, 12, 5267.	5.8	122
57	Facile Synthesis of Mesoporous TiO2â^C Nanosphere as an Improved Anode Material for Superior High Rate 1.5 V Rechargeable Li Ion Batteries Containing LiFePO4â^C Cathode. Journal of Physical Chemistry C, 2010, 114, 10308-10313.	1.5	113
58	Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material. Energy and Environmental Science, 2012, 5, 8007.	15.6	111
59	Porous Coconut Shell Carbon Offering High Retention and Deep Lithiation of Sulfur for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 33855-33862.	4.0	107
60	Polyanthraquinone-Triazine—A Promising Anode Material for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 37023-37030.	4.0	106
61	Highâ€Efficiency Cathode Sodium Compensation for Sodiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2001419.	11.1	106
62	Polymer lithium-garnet interphase for an all-solid-state rechargeable battery. Nano Energy, 2018, 53, 926-931.	8.2	103
63	A Perovskite Electrolyte That Is Stable in Moist Air for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 8587-8591.	7.2	103
64	Facile Synthesis of Germanium Nanocrystals and Their Application in Organic–Inorganic Hybrid Photodetectors. Advanced Materials, 2011, 23, 3704-3707.	11.1	102
65	Advanced Electrolytes Enabling Safe and Stable Rechargeable Liâ€Metal Batteries: Progress and Prospects. Advanced Functional Materials, 2021, 31, 2105253.	7.8	102
66	Nitrogen-Doped Perovskite as a Bifunctional Cathode Catalyst for Rechargeable Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5543-5550.	4.0	100
67	In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. Energy Storage Materials, 2021, 39, 186-193.	9.5	98
68	Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. Physical Chemistry Chemical Physics, 2012, 14, 2934.	1.3	97
69	Enhanced Li+ conductivity in PEO–LiBOB polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ionics, 2011, 186, 1-6.	1.3	96
70	Preparation and Li Storage Properties of Hierarchical Porous Carbon Fibers Derived from Alginic Acid. ChemSusChem, 2010, 3, 703-707.	3.6	95
71	Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Li Batteries with Long Lifespan. Particle and Particle Systems Characterization, 2013, 30, 321-325.	1.2	90
72	A Rational Reconfiguration of Electrolyte for Highâ€Energy and Longâ€Life Lithium–Chalcogen Batteries. Advanced Materials, 2020, 32, e2000302.	11.1	88

#	Article	IF	CITATIONS
73	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 6585-6589.	7.2	84
74	An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. Nano Energy, 2020, 74, 104890.	8.2	84
75	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 16554-16560.	7.2	80
76	Atom-Thick Interlayer Made of CVD-Grown Graphene Film on Separator for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 43696-43703.	4.0	79
77	Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries. Nano Research, 2019, 12, 1739-1749.	5.8	79
78	Enhanced Visible-Light-Driven Photocatalytic H ₂ Evolution from Water on Noble-Metal-Free CdS-Nanoparticle-Dispersed Mo ₂ C@C Nanospheres. ACS Sustainable Chemistry and Engineering, 2017, 5, 5449-5456.	3.2	77
79	A Universal Strategy toward Air‧table and Highâ€Rate O3 Layered Oxide Cathodes for Naâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	7.8	77
80	Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2000791.	10.2	75
81	Copper germanate nanowire/reduced graphene oxide anode materials for high energy lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 11404.	5.2	73
82	Peptide Self-Assembled Biofilm with Unique Electron Transfer Flexibility for Highly Efficient Visible-Light-Driven Photocatalysis. ACS Nano, 2015, 9, 11258-11265.	7.3	73
83	Elastic Carbon Nanotube Aerogel Meets Tellurium Nanowires: A Binder―and Collectorâ€Free Electrode for Liâ€Te Batteries. Advanced Functional Materials, 2016, 26, 3580-3588.	7.8	73
84	Roomâ€Temperature Liquid Na–K Anode Membranes. Angewandte Chemie - International Edition, 2018, 57, 14184-14187.	7.2	73
85	Prussianâ€blue materials: Revealing new opportunities for rechargeable batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	73
86	Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithiumâ€lon Batteries. Angewandte Chemie, 2017, 129, 771-774.	1.6	72
87	Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries. Physical Chemistry Chemical Physics, 2011, 13, 2014.	1.3	70
88	α-MnO2 nanorods supported on porous graphitic carbon nitride as efficient electrocatalysts for lithium-air batteries. Journal of Power Sources, 2018, 392, 15-22.	4.0	67
89	Non-sacrificial template synthesis of Cr2O3–C hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 7565.	6.7	65
90	Selective CO Evolution from Photoreduction of CO ₂ on a Metal-Carbide-Based Composite Catalyst. Journal of the American Chemical Society, 2018, 140, 13071-13077.	6.6	65

#	Article	IF	CITATIONS
91	A novel polymer electrolyte with improved high-temperature-tolerance up to 170°C for high-temperature lithium-ion batteries. Journal of Power Sources, 2013, 244, 234-239.	4.0	61
92	A 3D Lithium/Carbon Fiber Anode with Sustained Electrolyte Contact for Solid‣tate Batteries. Advanced Energy Materials, 2020, 10, 1903325.	10.2	61
93	Stabilizing Polymer–Lithium Interface in a Rechargeable Solid Battery. Advanced Functional Materials, 2020, 30, 1908047.	7.8	59
94	Graphene Sandwiched by Sulfur-Confined Mesoporous Carbon Nanosheets: A Kinetically Stable Cathode for Li–S Batteries. ACS Applied Materials & Interfaces, 2016, 8, 33704-33711.	4.0	56
95	Electrocatalytic performances of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries. Scientific Reports, 2016, 6, 24314.	1.6	56
96	Competitive Doping Chemistry for Nickelâ€Rich Layered Oxide Cathode Materials. Angewandte Chemie - International Edition, 2022, 61, .	7.2	55
97	Conductive Carbon Network inside a Sulfur-Impregnated Carbon Sponge: A Bioinspired High-Performance Cathode for Li–S Battery. ACS Applied Materials & Interfaces, 2016, 8, 22261-22269.	4.0	54
98	Graphitic Nanocarbon–Selenium Cathode with Favorable Rate Capability for Li–Se Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8759-8765.	4.0	54
99	Builtâ€in Carbon Nanotube Network inside a Biomassâ€Derived Hierarchically Porous Carbon to Enhance the Performance of the Sulfur Cathode in a Liâ€5 Battery. ChemNanoMat, 2016, 2, 712-718.	1.5	52
100	Short O–O separation in layered oxide Na _{0.67} CoO ₂ enables an ultrafast oxygen evolution reaction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23473-23479.	3.3	52
101	Methods for the Stabilization of Nanostructured Electrode Materials for Advanced Rechargeable Batteries. Small Methods, 2017, 1, 1700094.	4.6	50
102	Co3O4 modified Ag/g-C3N4 composite as a bifunctional cathode for lithium-oxygen battery. Journal of Energy Chemistry, 2020, 41, 185-193.	7.1	48
103	Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries. Science China Chemistry, 2020, 63, 1402-1415.	4.2	48
104	A Highâ€Energyâ€Density Potassium Battery with a Polymerâ€Gel Electrolyte and a Polyaniline Cathode. Angewandte Chemie, 2018, 130, 5547-5551.	1.6	47
105	Air-stability of sodium-based layered-oxide cathode materials. Science China Chemistry, 2022, 65, 1076-1087.	4.2	46
106	General and Straightforward Synthetic Route to Phenolic Resin Gels Templated by Chitosan Networks. Chemistry of Materials, 2014, 26, 6915-6918.	3.2	45
107	Combining Nitrogenâ€Doped Graphene Sheets and MoS ₂ : A Unique Film–Foam–Film Structure for Enhanced Lithium Storage. Angewandte Chemie, 2016, 128, 12975-12980.	1.6	44
108	The Origin of Superior Performance of Co(OH)2 in Hybrid Supercapacitors. CheM, 2017, 3, 26-28.	5.8	43

#	Article	IF	CITATIONS
109	Facile Synthesis of Carbon-Coated Porous Sb ₂ Te ₃ Nanoplates with High Alkali Metal Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 29934-29940.	4.0	40
110	Unraveling the Synergistic Coupling Mechanism of Li ⁺ Transport in an "lonogelâ€inâ€Ceramic― Hybrid Solid Electrolyte for Rechargeable Lithium Metal Battery. Advanced Functional Materials, 2022, 32, 2108706.	7.8	38
111	A facile strategy to reconcile 3D anodes and ceramic electrolytes for stable solid-state Li metal batteries. Energy Storage Materials, 2020, 32, 458-464.	9.5	35
112	Facile synthesis of CuO nanochains as high-rate anode materials for lithium-ion batteries. New Journal of Chemistry, 2019, 43, 6535-6539.	1.4	33
113	SnO2 hollow spheres: Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage. Science China Chemistry, 2012, 55, 1314-1318.	4.2	32
114	Enhanced working temperature of PEO-based polymer electrolyte via porous PTFE film as an efficient heat resister. Solid State Ionics, 2013, 245-246, 1-7.	1.3	32
115	Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderateâ€Temperature Conversion Chemistry. Angewandte Chemie, 2020, 132, 12167-12173.	1.6	30
116	Interfacial Evolution of the Solid Electrolyte Interphase and Lithium Deposition in Graphdiyne-Based Lithium-Ion Batteries. Journal of the American Chemical Society, 2022, 144, 9354-9362.	6.6	30
117	Fluorineâ€Doped Antiperovskite Electrolyte for Allâ€Solidâ€State Lithiumâ€Ion Batteries. Angewandte Chemie, 2016, 128, 10119-10122.	1.6	29
118	Grapheneâ€Wrapped Graphitic Carbon Hollow Spheres: Bioinspired Synthesis and Applications in Batteries and Supercapacitors. ChemNanoMat, 2016, 2, 540-546.	1.5	28
119	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 6647-6651.	1.6	26
120	Stable Sodium Storage of Red Phosphorus Anode Enabled by a Dual-Protection Strategy. ACS Applied Materials & amp; Interfaces, 2018, 10, 30479-30486.	4.0	24
121	Nanoparticles Engineering for Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2013, 30, 737-753.	1.2	22
122	Green <i>in Situ</i> Growth Solid Electrolyte Interphase Layer with High Rebound Resilience for Long-Life Lithium Metal Anodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 43200-43205.	4.0	22
123	Highly Selective Synthesis of Monolayer or Bilayer WSe ₂ Single Crystals by Pre-annealing the Solid Precursor. Chemistry of Materials, 2021, 33, 1307-1313.	3.2	20
124	An Inverse Aluminum Battery: Putting the Aluminum as the Cathode. ACS Energy Letters, 2017, 2, 1534-1538.	8.8	19
125	Insights into the pre-oxidation process of phenolic resin-based hard carbon for sodium storage. Materials Chemistry Frontiers, 2021, 5, 3911-3917.	3.2	19
126	Designing π-conjugated polypyrene nanoflowers formed with meso- and microporous nanosheets for high-performance anode of potassium ion batteries. Chemical Engineering Journal, 2022, 430, 132704.	6.6	19

#	Article	IF	CITATIONS
127	Surface Reconstruction-Associated Partially Amorphized Bismuth Oxychloride for Boosted Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 5088-5098.	4.0	18
128	Revealing the Superiority of Fast Ion Conductor in Composite Electrolyte for Dendrite-Free Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22978-22986.	4.0	18
129	Carambola-shaped LiFePO ₄ /C nanocomposites: directing synthesis and enhanced Li storage properties. Journal of Materials Chemistry A, 2015, 3, 116-120.	5.2	16
130	Boron-doped three-dimensional MXene host for durable lithium-metal anode. Rare Metals, 2022, 41, 2217-2222.	3.6	16
131	Roomâ€Temperature Liquid Na–K Anode Membranes. Angewandte Chemie, 2018, 130, 14380-14383.	1.6	15
132	Hydrogen Isotope Effects on Aqueous Electrolyte for Electrochemical Lithiumâ€ion Storage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
133	Constructing a stable interface between the sulfide electrolyte and the Li metal anode <i>via</i> a Li ⁺ -conductive gel polymer interlayer. Materials Chemistry Frontiers, 2021, 5, 5328-5335.	3.2	12
134	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie, 2021, 133, 16690-16696.	1.6	12
135	Synthesis of Nanostructured SnO2/C Microfibers with Improved Performances as Anode Material for Li-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2012, 12, 2581-2585.	0.9	11
136	Insights into the nitride-regulated processes at the electrolyte/electrode interface in quasi-solid-state lithium metal batteries. Journal of Energy Chemistry, 2022, 67, 780-786.	7.1	11
137	A N-Rich porous carbon nanocube anchored with Co/Fe dual atoms: an efficient bifunctional catalytic host for Li–S batteries. Materials Chemistry Frontiers, 2022, 6, 2095-2102.	3.2	11
138	Recent progress and design principles of nanocomposite solid electrolytes. Current Opinion in Electrochemistry, 2020, 22, 195-202.	2.5	9
139	Fullerene-Derivative C60-(OLi)n Modified Separators toward Stable Wide-Temperature Lithium Metal Batteries. Chemical Engineering Journal, 2022, 446, 137207.	6.6	9
140	Stabilizing the Electrochemistry of Lithium-Selenium Battery via In situ Gelated Polymer Electrolyte: A Look from Anode. Chemical Research in Chinese Universities, 2021, 37, 298-303.	1.3	8
141	A Perovskite Electrolyte That Is Stable in Moist Air for Lithiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 8723-8727.	1.6	7
142	Mo ₂ C Electrocatalysts for Kinetically Boosting Polysulfide Conversion in Quasi-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 45651-45660.	4.0	7
143	Electrode materials for lithium secondary batteries with high energy densities. Scientia Sinica Chimica, 2011, 41, 1229-1239.	0.2	7
144	Competitive Doping Chemistry for Nickelâ€Rich Layered Oxide Cathode Materials. Angewandte Chemie, 2022, 134, .	1.6	7

#	Article	IF	CITATIONS
145	Layered Oxide Cathodeâ€Electrolyte Interface towards Naâ€lon Batteries: Advances and Perspectives. Chemistry - an Asian Journal, 2022, 17, e202200213.	1.7	7
146	O3-Type Na _{2/3} Ni _{1/3} Ti _{2/3} O ₂ Layered Oxide as a Stable and High-Rate Anode Material for Sodium Storage. ACS Applied Materials & Interfaces, 2022, 14, 677-683.	4.0	6
147	Supercapacitor-battery hybrid energy storage devices from an aqueous nitroxide radical active material. Science Bulletin, 2011, 56, 2433-2436.	1.7	5
148	Carbon Nanostructures: Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li–S Batteries (Adv. Mater. 41/2016). Advanced Materials, 2016, 28, 9016-9016.	11.1	5
149	Stable Lithium Storage in Nitrogenâ€Doped Carbonâ€Coated Ferric Oxide Yolk–Shell Nanospindles with Preserved Hollow Space. ChemPlusChem, 2018, 83, 99-107.	1.3	5
150	Twoâ€Dimensional Boron and Nitrogen Dualâ€Doped Graphitic Carbon as an Efficient Metalâ€Free Cathodic Electrocatalyst for Lithiumâ€Air Batteries. ChemElectroChem, 2021, 8, 949-956.	1.7	5
151	Batteries: A High-Energy Room-Temperature Sodium-Sulfur Battery (Adv. Mater. 8/2014). Advanced Materials, 2014, 26, 1308-1308.	11.1	3
152	Hydrogen Isotope Effects on Aqueous Electrolyte for Electrochemical Lithiumâ€ion Storage. Angewandte Chemie, 0, , .	1.6	3
153	Batteries: Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Liâ€S Batteries with Long Lifespan (Part. Part. Syst. Charact. 4/2013). Particle and Particle Systems Characterization, 2013, 30, 392-392.	1.2	1
154	Binder/Collectorâ€Free Te Cathodes: Elastic Carbon Nanotube Aerogel Meets Tellurium Nanowires: A Binder―and Collectorâ€Free Electrode for Liâ€Te Batteries (Adv. Funct. Mater. 21/2016). Advanced Functional Materials, 2016, 26, 3747-3747.	7.8	0
155	Introduction to Electrochemical Energy Storage. , 2019, , 1-28.		0
156	Charge Transfer and Storage of an Electrochemical Cell and Its Nano Effects. , 2019, , 29-87.		0
157	Hierarchically Nanostructured Electrode Materials for Lithium-Ion Batteries. , 2011, , 237-266.		0