Yong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2655743/publications.pdf

Version: 2024-02-01

53 4,015 25
papers citations h-index

54

all docs

citations h-index g-index

54
docs citations times ranked citing authors

168389

53

#	Article	IF	CITATIONS
1	Thermodynamically stabilized β-CsPbI ₃ –based perovskite solar cells with efficiencies >18%. Science, 2019, 365, 591-595.	12.6	963
2	Bifunctional Stabilization of All-Inorganic α-CsPbl ₃ Perovskite for 17% Efficiency Photovoltaics. Journal of the American Chemical Society, 2018, 140, 12345-12348.	13.7	565
3	The Role of Dimethylammonium lodide in CsPbl ₃ Perovskite Fabrication: Additive or Dopant?. Angewandte Chemie - International Edition, 2019, 58, 16691-16696.	13.8	407
4	Efficient α-CsPbI3 Photovoltaics with Surface Terminated Organic Cations. Joule, 2018, 2, 2065-2075.	24.0	280
5	A Facile Low Temperature Fabrication of High Performance CsPbl ₂ Br Allâ€Inorganic Perovskite Solar Cells. Solar Rrl, 2018, 2, 1700180.	5.8	139
6	Chemically Stable Black Phase CsPbI ₃ Inorganic Perovskites for Highâ€Efficiency Photovoltaics. Advanced Materials, 2020, 32, e2001025.	21.0	123
7	Efficient and Stable Red Perovskite Lightâ€Emitting Diodes with Operational Stability >300 h. Advanced Materials, 2021, 33, e2008820.	21.0	119
8	Efficient and Stable CsPbl ₃ Inorganic Perovskite Photovoltaics Enabled by Crystal Secondary Growth. Advanced Materials, 2021, 33, e2103688.	21.0	104
9	Li dopant induces moisture sensitive phase degradation of an all-inorganic CsPbI ₂ Br perovskite. Chemical Communications, 2018, 54, 9809-9812.	4.1	92
10	The Role of Dimethylammonium Iodide in CsPbI ₃ Perovskite Fabrication: Additive or Dopant?. Angewandte Chemie, 2019, 131, 16844-16849.	2.0	90
11	High Phase Stability in CsPbI ₃ Enabled by Pb–I Octahedra Anchors for Efficient Inorganic Perovskite Photovoltaics. Advanced Materials, 2020, 32, e2000186.	21.0	90
12	Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective. Advanced Energy Materials, 2022, 12, .	19.5	87
13	Effects of Mn addition on the two-body abrasive wear behavior of Fe-3.0 wt% B alloy. Tribology International, 2016, 103, 243-251.	5.9	58
14	Spontaneous low-temperature crystallization of α-FAPbi3 for highly efficient perovskite solar cells. Science Bulletin, 2019, 64, 1608-1616.	9.0	58
15	Investigation on two-body abrasive wear behavior and mechanism of Fe–3.0 wt% B cast alloy with different chromium content. Wear, 2016, 362-363, 68-77.	3.1	55
16	Photostability of MAPbl ₃ Perovskite Solar Cells by Incorporating Black Phosphorus. Solar Rrl, 2019, 3, 1900197.	5.8	53
17	Tailoring the Interface in FAPbI ₃ Planar Perovskite Solar Cells by Imidazoleâ€Grapheneâ€Quantumâ€Dots. Advanced Functional Materials, 2021, 31, 2101438.	14.9	51
18	Organic salt mediated growth of phase pure and stable all-inorganic CsPbX3 (X = I, Br) perovskites for efficient photovoltaics. Science Bulletin, 2019, 64, 1773-1779.	9.0	45

#	Article	IF	CITATIONS
19	Triple Interface Passivation Strategyâ€Enabled Efficient and Stable Inverted Perovskite Solar Cells. Small Methods, 2020, 4, 2000478.	8.6	44
20	Inorganic CsPbI ₃ Perovskites toward Highâ€Efficiency Photovoltaics. Energy and Environmental Materials, 2019, 2, 73-78.	12.8	43
21	Efficient Interconnection in Perovskite Tandem Solar Cells. Small Methods, 2020, 4, 2000093.	8.6	43
22	Effect of Fe 2 B orientation on erosion–corrosion behavior of Fe–3.5 wt.% B steel in flowing zinc. Corrosion Science, 2015, 98, 240-248.	6.6	37
23	Stable Cesium-Rich Formamidinium/Cesium Pure-Iodide Perovskites for Efficient Photovoltaics. ACS Energy Letters, 2021, 6, 2735-2741.	17.4	31
24	A first principles study of adhesion and electronic structure at Fe (110)/graphite (0001) interface. Applied Surface Science, 2017, 405, 497-502.	6.1	27
25	CH3NH3Cl Assisted Solvent Engineering for Highly Crystallized and Large Grain Size Mixed-Composition (FAPbI3)0.85(MAPbBr3)0.15 Perovskites. Crystals, 2017, 7, 272.	2.2	26
26	A mixed-cation lead iodide MA1â^EA PbI3 absorber for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 215-218.	12.9	25
27	Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells. Materials Horizons, 2018, 5, 868-873.	12.2	25
28	Highly Efficient (110) Orientated FAâ€MA Mixed Cation Perovskite Solar Cells via Functionalized Carbon Nanotube and Methylammonium Chloride Additive. Small Methods, 2020, 4, 1900511.	8.6	25
29	Interfacial morphologies and erosion–corrosion behavior of directional Fe-3.5 wt.% B steel in flowing liquid Zn containing 0.30 wt.% Al. Corrosion Science, 2016, 112, 25-35.	6.6	23
30	Interface characterization and erosion–corrosion behavior of directional Fe-3.5 wt.% B steel in flowing liquid zinc at various temperatures. Corrosion Science, 2016, 104, 260-268.	6.6	23
31	Establishing Multifunctional Interface Layer of Perovskite Ligand Modified Lead Sulfide Quantum Dots for Improving the Performance and Stability of Perovskite Solar Cells. Small, 2020, 16, e2002628.	10.0	20
32	Multifunctional Ion‣ock Interface Layer Achieved by Solid–Solid Contact Approach for Stabilizing Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	20
33	Effects of Erosion Angle on Erosion Properties of Fe-B Alloy in Flowing Liquid Zinc. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1900-1907.	2.2	19
34	Organic nanocrystals induced surface passivation towards high-efficiency and stable perovskite solar cells. Nano Energy, 2021, 89, 106445.	16.0	19
35	Effect of crystal orientation on microstructure and properties of bulk Fe ₂ 8 intermetallic. Journal of Materials Research, 2015, 30, 257-265.	2.6	18
36	Interfacial morphology and corrosion-wear behavior of cast Fe-3.5 wt.% B steel in liquid zinc. Corrosion Science, 2018, 131, 290-299.	6.6	18

#	Article	IF	Citations
37	Steric Mixedâ€Cation 2D Perovskite as a Methylammonium Locker to Stabilize MAPbl ₃ . Angewandte Chemie, 2020, 132, 1485-1489.	2.0	18
38	Three-Body Abrasive Behavior of Cementite–Iron Composite with Different Cementite Volume Fractions. Tribology Letters, 2016, 62, 1.	2.6	16
39	High crystallinity and photovoltaic performance of CsPbI3 film enabled by secondary dimension. Journal of Energy Chemistry, 2020, 48, 181-186.	12.9	13
40	Investigation of flowing liquid zinc erosion and corrosion properties of the Fe–B alloy at various times. Journal of Materials Research, 2015, 30, 727-735.	2.6	11
41	Hot Carrier Dynamics and Charge Trapping in Surface Passivated β-CsPbl ₃ Inorganic Perovskite. Journal of Physical Chemistry Letters, 2021, 12, 6907-6913.	4.6	10
42	Effect of carbon equivalent on thermal and mechanical properties of compacted graphite cast iron. Journal of Materials Research, 2016, 31, 2516-2523.	2.6	9
43	Effects of Chromium Addition on Preparation and Properties of Bulk Cementite. Journal of Iron and Steel Research International, 2016, 23, 842-850.	2.8	8
44	Evaporationâ€Free Organic Solar Cells with High Efficiency Enabled by Dry and Nonimmersive Sintering Strategy. Advanced Functional Materials, 2021, 31, 2010764.	14.9	8
45	Effect of 0.3Âwt.% Al Addition in Flowing Liquid Zinc on the Erosion-Corrosion Behavior of Fe-3.5Âwt.% B Alloy. Journal of Materials Engineering and Performance, 2015, 24, 2444-2450.	2.5	7
46	Erosion–corrosion interaction of Fe–B alloy in flowing zinc. Materials Science and Technology, 2016, 32, 49-56.	1.6	7
47	Effect of erosion angle and Fe2B orientation on cavitation erosion and interfaces of Fe-B alloy in high-velocity flowing zinc. Wear, 2018, 412-413, 60-68.	3.1	7
48	Realizing the ultimate goal of fully solution-processed organic solar cells: a compatible self-sintering method to achieve silver back electrode. Journal of Materials Chemistry A, 2020, 8, 6083-6091.	10.3	7
49	Fast Charge Diffusion in MAPb(I _{1–<i>x</i>} Br <i>_x</i>) ₃ Films for High-Efficiency Solar Cells Revealed by Ultrafast Time-Resolved Reflectivity. Journal of Physical Chemistry A, 2019, 123, 2674-2678.	2.5	6
50	2â€Aminobenzenethiolâ€Functionalized Silverâ€Decorated Nanoporous Silicon Photoelectrodes for Selective CO 2 Reduction. Angewandte Chemie, 2020, 132, 11559-11566.	2.0	6
51	Effect of Fe2B orientation morphology on high temperature erosion-wear behavior of Fe–B alloy in liquid zinc. Wear, 2021, 484-485, 204038.	3.1	6
52	Effect of erosion speed on the interaction between erosion and corrosion of the Fe–3.5 wt% B alloy in a flowing zinc bath. Journal of Materials Research, 2015, 30, 852-859.	2.6	5
53	Investigation of erosion properties of directionally solidified Fe–B alloy in various velocities liquid zinc. Journal of Materials Research, 2017, 32, 2381-2388.	2.6	5