Evgeniy G Gordeev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2655732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chemical Reviews, 2017, 117, 7132-7189.	23.0	1,201
2	Organoelement chemistry: promising growth areas and challenges. Russian Chemical Reviews, 2018, 87, 393-507.	2.5	157
3	Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling. PLoS ONE, 2018, 13, e0198370.	1.1	136
4	A New Mode of Operation of Pd-NHC Systems Studied in a Catalytic Mizoroki–Heck Reaction. Organometallics, 2017, 36, 1981-1992.	1.1	119
5	Phantom Reactivity in Organic and Catalytic Reactions as a Consequence of Microscale Destruction and Contamination-Trapping Effects of Magnetic Stir Bars. ACS Catalysis, 2019, 9, 3070-3081.	5.5	106
6	Threeâ€Dimensional Printing with Biomassâ€Derived PEF for Carbonâ€Neutral Manufacturing. Angewandte Chemie - International Edition, 2017, 56, 15931-15935.	7.2	101
7	[3 + 2]-Cycloaddition of <i>in Situ</i> Generated Nitrile Imines and Acetylene for Assembling of 1,3-Disubstituted Pyrazoles with Quantitative Deuterium Labeling. Journal of Organic Chemistry, 2018, 83, 3819-3828.	1.7	72
8	Revealing interactions of layered polymeric materials at solid-liquid interface for building solvent compatibility charts for 3D printing applications. Scientific Reports, 2019, 9, 20177.	1.6	64
9	Fast and accurate computational modeling of adsorption on graphene: a dispersion interaction challenge. Physical Chemistry Chemical Physics, 2013, 15, 18815.	1.3	61
10	Pd-NHC Catalytic System for the Efficient Atom-Economic Synthesis of Vinyl Sulfides from Tertiary, Secondary, or Primary Thiols. ACS Catalysis, 2015, 5, 7208-7213.	5.5	61
11	Efficient route for the construction of polycyclic systems from bioderived HMF. Green Chemistry, 2017, 19, 4858-4864.	4.6	59
12	A solid acetylene reagent with enhanced reactivity: fluoride-mediated functionalization of alcohols and phenols. Green Chemistry, 2017, 19, 3032-3041.	4.6	56
13	Noninnocent Nature of Carbon Support in Metal/Carbon Catalysts: Etching/Pitting vs Nanotube Growth under Microwave Irradiation. ACS Catalysis, 2014, 4, 3806-3814.	5.5	49
14	Selectivity control in thiol–yne click reactions <i>via</i> visible light induced associative electron upconversion. Chemical Science, 2020, 11, 10061-10070.	3.7	47
15	Carboxylate Switch between Hydro―and Carbopalladation Pathways in Regiodivergent Dimerization of Alkynes. Chemistry - A European Journal, 2014, 20, 9578-9588.	1.7	41
16	Analysis of 3D printing possibilities for the development of practical applications in synthetic organic chemistry. Russian Chemical Bulletin, 2016, 65, 1637-1643.	0.4	35
17	Influence of R–NHC Coupling on the Outcome of R–X Oxidative Addition to Pd/NHC Complexes (R = Me,) Tj	ETQq1 1	0.784314 rgi 32
	Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics:		

¹⁸ applications, materials and prospects. Russian Chemical Reviews, 2020, 89, 1507-1561.

2.5 32

EVGENIY G GORDEEV

#	Article	IF	CITATIONS
19	Biomass-Derived Ionic Liquids Based on a 5-HMF Platform Chemical: Synthesis, Characterization, Biological Activity, and Tunable Interactions at the Molecular Level. ACS Sustainable Chemistry and Engineering, 2021, 9, 3552-3570.	3.2	27
20	Pd-Catalyzed Synthesis of Densely Functionalized Cyclopropyl Vinyl Sulfides Reveals the Origin of High Selectivity in a Fundamental Alkyne Insertion Step. ACS Catalysis, 2020, 10, 9872-9888.	5.5	23
21	Carbocatalytic Acetylene Cyclotrimerization: A Key Role of Unpaired Electron Delocalization. Journal of the American Chemical Society, 2020, 142, 3784-3796.	6.6	21
22	Visualization of catalyst dynamics and development of a practical procedure to study complex "cocktail―type catalytic systems. Faraday Discussions, 2021, 229, 458-474.	1.6	21
23	Controlled Natural Biomass Deoxygenation Allows the Design of Reusable Hot-Melt Adhesives Acting in a Multiple Oxygen Binding Mode. ACS Applied Materials & Interfaces, 2020, 12, 45394-45403.	4.0	19
24	Computational Study of a Model System of Enzyme-Mediated [4+2] Cycloaddition Reaction. PLoS ONE, 2015, 10, e0119984.	1.1	18
25	Addressing Reversibility of R–NHC Coupling on Palladium: Is Nano-to-Molecular Transition Possible for the Pd/NHC System?. Inorganic Chemistry, 2019, 58, 12218-12227.	1.9	16
26	Novel [4 + 2] cycloaddition reactions of alkyne and enyne key-units: Direct access to bicyclic aromatic and heteroaromatic products. A theoretical mechanistic study. Chemical Science, 2011, 2, 2332-2341.	3.7	15
27	Stabilization of the Pd–NHC framework with 1,2,4-triazol-5-ylidene ligands toward decomposition in alkaline media. Inorganic Chemistry Frontiers, 2021, 8, 3382-3401.	3.0	15
28	Shielding the chemical reactivity using graphene layers for controlling the surface properties of carbon materials. Physical Chemistry Chemical Physics, 2016, 18, 4608-4616.	1.3	14
29	High-Performance Synthesis of Phosphorus-Doped Graphene Materials and Stabilization of Phosphoric Micro- and Nanodroplets. Langmuir, 2018, 34, 15739-15748.	1.6	13
30	Systematic Study of Aromaticâ€Ringâ€Targeted Cycloadditions of 5â€Hydroxymethylfurfural Platform Chemicals. ChemSusChem, 2021, 14, 3110-3123.	3.6	13
31	Relative stabilities of M/NHC complexes (M = Ni, Pd, Pt) against R–NHC, X–NHC and X–X couplings in M(0)/M(<scp>ii</scp>) and M(<scp>ii</scp>)/M(<scp>iv</scp>) catalytic cycles: a theoretical study. Dalton Transactions, 2019, 48, 17052-17062.	1.6	12
32	Organocatalytic Deuteration Induced by the Dynamic Covalent Interaction of Imidazolium Cations with Ketones. Advanced Synthesis and Catalysis, 2021, 363, 1368-1378.	2.1	11
33	Structure and properties of 1,2-, 1,7-, and 1,12-dicarba-closo-dodecaboranes(12): A quantum chemical study. Russian Chemical Bulletin, 2006, 55, 2154-2160.	0.4	10
34	Deep neural network analysis of nanoparticle ordering to identify defects in layered carbon materials. Chemical Science, 2021, 12, 7428-7441.	3.7	10
35	Switching the nature of catalytic centers in Pd/NHC systems by solvent effect driven nonâ€classical Râ€NHC Coupling. Journal of Computational Chemistry, 2019, 40, 191-199.	1.5	9
36	3D Printing to Increase the Flexibility of the Chemical Synthesis of Biologically Active Molecules: Design of On-Demand Gas Generation Reactors. International Journal of Molecular Sciences, 2021, 22, 9919	1.8	9

EVGENIY G GORDEEV

#	Article	IF	CITATIONS
37	Oneâ€&tep Access to Heteroatomâ€Functionalized Imidazol(in)ium Salts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
38	Ambident Reactivity of Imidazolium Cations as Evidence of the Dynamic Nature of Nâ€Heterocyclic Carbeneâ€Mediated Organocatalysis. Chemistry - A European Journal, 2020, 26, 8567-8571.	1.7	8
39	Integration of thermal imaging and neural networks for mechanical strength analysis and fracture prediction in 3D-printed plastic parts. Scientific Reports, 2022, 12, .	1.6	7
40	Design of a Bimetallic Au/Ag System for Dechlorination of Organochlorides: Experimental and Theoretical Evidence for the Role of the Cluster Effect. Organometallics, 2014, 33, 6003-6012.	1.1	6
41	Exploring metallic and plastic 3D printed photochemical reactors for customizing chemical synthesis. Scientific Reports, 2022, 12, 3780.	1.6	5
42	Synthesis and Structure of Bis(3,3′-diamino-N-methyldipropylamine)-dichlorodi(μ-chloro)dinickel. Russian Journal of General Chemistry, 2005, 75, 1870-1873.	0.3	3
43	Quantum chemical study of nickel(II) complexes with cyclic diimine ligands on the base of bis[3,3′-iminopropyl]methylamine. Journal of Structural Chemistry, 2006, 47, 15-20.	0.3	3
44	Reactions of dichlorocarbene, dichlorosilylene, and dichlorogermylene with carboranes(12). A theoretical study. Russian Journal of General Chemistry, 2014, 84, 1330-1338.	0.3	3
45	Carbocatalysis: From Acetylene Trimerization to Modern Organic Synthesis. A Review. Doklady Physical Chemistry, 2020, 493, 95-122.	0.2	3
46	Computational Design of Radical Recognition Assay with the Possible Application of Cyclopropyl Vinyl Sulfides as Tunable Sensors. International Journal of Molecular Sciences, 2021, 22, 7637.	1.8	3
47	Merging structural frameworks of imidazolium, pyridinium, and cholinium ionic liquids with cinnamic acid to tune solution state behavior and properties. Journal of Molecular Liquids, 2022, 352, 118673.	2.3	3
48	Formation conditions for InAs/GaAs quantum dot arrays by droplet epitaxy under MOVPE conditions. Technical Physics, 2014, 59, 78-84.	0.2	2
49	Retrieval and analysis of transition states in electrophilic substitution reactions of the carborane(12) series. Russian Journal of General Chemistry, 2012, 82, 1517-1523.	0.3	1
50	Oneâ€Step Access to Heteroatomâ€Functionalized Imidazol(in)ium Salts. Angewandte Chemie, 0, , .	1.6	1
51	Reaction of tetrachlorogermane with thienyl- and phenylchlorosilanes in presence of aluminum chloride. Synthesis of thienylchlorogermanes. Russian Journal of General Chemistry, 2014, 84, 280-284.	0.3	0
52	Reaction of chloro(ethyl)silanes with chloro(phenyl)silanes in the presence of aluminum chloride. Synthesis of chloro(ethyl)(phenyl)silanes. Russian Journal of General Chemistry, 2015, 85, 595-599.	0.3	0
53	Frontispiece: Oneâ€Step Access to Heteroatomâ€Functionalized Imidazol(in)ium Salts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	0
54	Frontispiz: Oneâ€Step Access to Heteroatomâ€Functionalized Imidazol(in)ium Salts. Angewandte Chemie, 2022, 134, .	1.6	0