Andrey Rempel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2654976/publications.pdf

Version: 2024-02-01

		172457	233421
173	3,007	29	45
papers	citations	h-index	g-index
180	180	100	2043
100	100	180	2043
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision. Russian Chemical Reviews, 2014, 83, 885-985.	6.5	182
2	Nanotechnologies. Properties and applications of nanostructured materials. Russian Chemical Reviews, 2007, 76, 435-461.	6.5	127
3	Superstructures of Non-Stoichiometric Interstitial Compounds and the Distribution Functions of Interstitial Atoms. Physica Status Solidi A, 1993, 135, 15-58.	1.7	87
4	Artificial silver sulfide Ag2S: Crystal structure and particle size in deposited powders. Superlattices and Microstructures, 2015, 83, 35-47.	3.1	84
5	Nonstoichiometry of nanocrystalline monoclinic silver sulfide. Physical Chemistry Chemical Physics, 2015, 17, 12466-12471.	2.8	84
6	Identification of Lattice Vacancies on the Two Sublattices of SiC. Physical Review Letters, 2002, 89, 185501.	7.8	72
7	Phase Diagrams of Metal–Carbon and Metal–Nitrogen Systems and Ordering in Strongly Nonstoichiometric Carbides and Nitrides. Physica Status Solidi A, 1997, 163, 273-304.	1.7	71
8	Aerobic oxidative C–H/C–H coupling of azaaromatics with indoles and pyrroles in the presence of TiO ₂ as a photocatalyst. Green Chemistry, 2015, 17, 4401-4410.	9.0	65
9	Order-Disorder Phase Transition Channel in Niobium Carbide. Physica Status Solidi A, 1986, 93, 71-80.	1.7	61
10	High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite α-Ag ₂ S and argentite β-Ag ₂ S. Physical Chemistry Chemical Physics, 2016, 18, 4617-4626.	2.8	59
11	Vacancies on the Ti sublattice in titanium monoxideTiOystudied using positron annihilation techniques. Physical Review B, 2007, 75, .	3 . 2	58
12	Atomic ordering and hardness of nonstoichiometric titanium carbide. International Journal of Refractory Metals and Hard Materials, 1997, 15, 61-64.	3.8	53
13	An in situ high-temperature scanning electron microscopy study of acanthite–argentite phase transformation in nanocrystalline silver sulfide powder. Physical Chemistry Chemical Physics, 2015, 17, 20495-20501.	2.8	50
14	Nonstoichiometric titanium dioxide nanotubes with enhanced catalytical activity under visible light. Scientific Reports, 2018, 8, 9607.	3.3	50
15	Nanostructured lead sulfide: synthesis, structure and properties. Russian Chemical Reviews, 2016, 85, 731-758.	6.5	49
16	Photocatalytic oxidation of ethanol vapors under visible light on CdS–TiO2 nanocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 250, 103-109.	3.9	48
17	Nanostructured silver sulfide: synthesis of various forms and their application. Russian Chemical Reviews, 2018, 87, 303-327.	6.5	47
18	Synthesis and solar light catalytic properties of titania–cadmium sulfide hybrid nanostructures. Catalysis Communications, 2015, 68, 61-66.	3.3	38

#	Article	IF	CITATIONS
19	Vacancy distribution in ordered Me6-C5-type carbides. Journal of Physics C: Solid State Physics, 1987, 20, 5011-5025.	1.5	36
20	Irradiation-induced atomic defects in SiC studied by positron annihilation. Applied Physics A: Materials Science and Processing, 1995, 61, 51-53.	2.3	35
21	Towards particle size regulation of chemically deposited lead sulfide (PbS). Journal of Crystal Growth, 2005, 280, 300-308.	1.5	35
22	Structural study of the initial growth of nanocrystalline CdS thin films in a chemical bath. Thin Solid Films, 2009, 517, 2586-2589.	1.8	35
23	Non-periodicity in nanoparticles with close-packed structures. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, 479-483.	0.3	35
24	Incommensurate ordered phase in non-stoichiometric tantalum carbide. Journal of Physics Condensed Matter, 1996, 8, 8277-8293.	1.8	34
25	Shortâ€Range Order in Superstructures. Physica Status Solidi (B): Basic Research, 1990, 160, 389-402.	1.5	33
26	Order Parameter Functional Method in the Theory of Atomic Ordering. Physica Status Solidi (B): Basic Research, 1985, 131, 43-51.	1.5	32
27	Atomic defects in hexagonal tungsten carbide studied by positron annihilation. Physical Review B, 2000, 61, 5945-5948.	3.2	32
28	Preparation of disordered and ordered highly nonstoichiometric carbides and evaluation of their homogeneity. Physics of the Solid State, 2000, 42, 1280-1286.	0.6	31
29	Atomic structure of cadmium sulfide nanoparticles. Physics of the Solid State, 2007, 49, 148-153.	0.6	31
30	Synthesis of nanocrystalline silver sulfide. Inorganic Materials, 2015, 51, 759-766.	0.8	31
31	Magnetic susceptibility and atomic ordering in tantalum carbide. Physica Status Solidi A, 1988, 106, 459-466.	1.7	30
32	Size and zeta potential of CdS nanoparticles in stable aqueous solution of EDTA and NaCl. Inorganic Materials, 2015, 51, 215-219.	0.8	30
33	Micro-Raman Spectroscopy of Nanostructured Silver Sulfide. Doklady Physical Chemistry, 2018, 480, 81-84.	0.9	29
34	A Study of the Atomic Ordering in the Niobium Carbide Using the Magnetic Susceptibility Method. Physica Status Solidi A, 1984, 84, 527-534.	1.7	26
35	Calculating the energy parameters for the CV and OPF methods. Physica Status Solidi (B): Basic Research, 1987, 140, 335-346.	1.5	25
36	Heat capacity of niobium and tantalum carbides NbC _{<i>y</i>} and TaC _{<i>y</i>} in disordered and ordered states below 300 K. Physica Status Solidi (B): Basic Research, 1996, 194, 467-482.	1.5	25

#	Article	IF	CITATIONS
37	The structure and optical properties of nanocrytalline lead sulfide films. Semiconductors, 2010, 44, 1349-1356.	0.5	25
38	Deep machine learning interatomic potential for liquid silica. Physical Review E, 2020, 102, 052125.	2.1	25
39	Microstructure of nanocrystalline PbS powders and films. Inorganic Materials, 2012, 48, 21-27.	0.8	24
40	Observation of high-temperature thermal vacancies in Al70Pd21Mn9quasicrystals. Physical Review B, 2003, 68, .	3.2	23
41	Crystal structure of nanostructured PbS films at temperatures of 293–423 K. Physics of the Solid State, 2009, 51, 2375-2383.	0.6	23
42	Effect of stoichiometry on the size of titanium monoxide nanoparticles produced by fragmentation. Inorganic Materials, 2015, 51, 1132-1137.	0.8	22
43	Atomic Ordering and Phase Equilibria in Strongly Nonstoichiometric Carbides and Nitrides. , 1999, , 47-64.		22
44	Titanium dioxide nanotubes: synthesis, structure, properties and applications. Russian Chemical Reviews, 2021, 90, 1397-1414.	6.5	21
45	In situ study of atomic-vacancy ordering in stoichiometric titanium monoxide by the magnetic susceptibility. JETP Letters, 2015, 101, 258-263.	1.4	20
46	Thermal expansion of nanocrystalline and coarse-crystalline silver sulfide Ag2S. Physics of the Solid State, 2016, 58, 251-257.	0.6	20
47	93Nb NMR study of an ordered and a disordered non-stoichiometric niobium carbide. Journal of Physics C: Solid State Physics, 1987, 20, 5655-5666.	1.5	19
48	Vacancies selectively induced and specifically detected on the two sublattices of the intermetallic compoundMoSi2. Physical Review B, 2002, 66, .	3.2	19
49	Hybrid nanoparticles based on sulfides, oxides, and carbides. Russian Chemical Bulletin, 2013, 62, 857-868.	1.5	19
50	Effect of WC nanoparticle size on the sintering temperature, density, and microhardness of WC-8 wt % Co alloys. Inorganic Materials, 2009, 45, 380-385.	0.8	18
51	Titania synthesized through regulated mineralization of cellulose and its photocatalytic activity. RSC Advances, 2015, 5, 8544-8551.	3.6	18
52	Influence of particle size, stoichiometry, and degree of long-range order on magnetic susceptibility of titanium monoxide. Physics of the Solid State, 2016, 58, 771-778.	0.6	18
53	Superconductivity in Disordered and Ordered Niobium Carbide. Physica Status Solidi (B): Basic Research, 1989, 151, 211-224.	1.5	17
54	Stability and recrystallization of PbS nanoparticles. Inorganic Materials, 2011, 47, 837-843.	0.8	17

#	Article	IF	Citations
55	Electronic structure of disordered titanium monoxide TiO y depending on stoichiometry. JETP Letters, 2012, 95, 647-651.	1.4	17
56	Simulation of the short-range order in disordered cubic titanium monoxide TiO1.0. JETP Letters, 2013, 97, 616-620.	1.4	17
57	Concentration quenching of fluorescence of colloid quantum dots of cadmium sulfide. Physics of the Solid State, 2014, 56, 568-571.	0.6	17
58	Inclusion of the correlation short-range order in Ab initio calculations of the energy of the ground state by example of titanium monoxide TiO1.0. JETP Letters, 2015, 102, 85-90.	1.4	17
59	Sol-gel synthesis and photoluminescence of Zn2SiO4:Mn nanoparticles. Inorganic Materials, 2015, 51, 152-157.	0.8	17
60	High Photocatalytic Activity Under Visible Light of Sandwich Structures Based on Anodic TiO2/CdS Nanoparticles/Sol–Gel TiO2. Topics in Catalysis, 2020, 63, 130-138.	2.8	17
61	Synthesis and Physicochemical Properties of Nanostructured TiO2 with Enhanced Photocatalytic Activity. Inorganic Materials, 2021, 57, 503-510.	0.8	17
62	Observation of structural vacancies. JETP Letters, 2003, 77, 25-29.	1.4	16
63	Fluorescent CdS nanoparticles for cell imaging. Inorganic Materials, 2011, 47, 223-226.	0.8	16
64	High-entropy alloys: properties and prospects of application as protective coatings. Russian Chemical Reviews, 2022, 91, .	6.5	16
65	Thermal vacancy formation andD03ordering in nanocrystalline intermetallic(Fe3Si)95Nb5. Physical Review B, 2001, 63, .	3.2	15
66	Transition of the CdS disordered structure to the wurtzite structure with an increase in the nanoparticle size. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 1395-1398.	0.6	14
67	Nanostructured titanium dioxide for medicinal chemistry. Russian Chemical Bulletin, 2019, 68, 2163-2171.	1.5	14
68	Diffraction analysis of nanocrystalline particle size of lead and cadmium sulfides prepared by chemical deposition from aqueous solutions. Journal of Structural Chemistry, 2004, 45, S154-S159.	1.0	13
69	Nonstoichiometric distribution of sulfur atoms in lead sulfide structure. Doklady Physical Chemistry, 2009, 428, 167-171.	0.9	13
70	Refinement of the V-O phase diagram in the range 25–50 at % oxygen. Inorganic Materials, 2009, 45, 47-54.	0.8	13
71	Oxidation of nanocrystalline lead sulfide in air. Russian Journal of Inorganic Chemistry, 2011, 56, 1864-1869.	1.3	13
72	Effect of the long-range order in the vacancy distribution on the electronic structure of titanium monoxide TiO1.0. JETP Letters, 2012, 96, 507-510.	1.4	13

#	Article	lF	Citations
73	Microhardness and phase composition of TiO y /hydroxyapatite nanocomposites synthesized under low-temperature annealing conditions. Inorganic Materials, 2016, 52, 476-482.	0.8	13
74	Zeta Potential, Size, and Semiconductor Properties of Zinc Sulfide Nanoparticles in a Stable Aqueous Colloid Solution. Russian Journal of Physical Chemistry A, 2016, 90, 864-869.	0.6	13
75	Sol-gel synthesis of nanosized titanium dioxide at various pH of the initial solution. AIP Conference Proceedings, 2017, , .	0.4	13
76	Positron Lifetime in the Atomic Vacancies of Nonstoichiometric Titanium and Vanadium Carbides. Physica Status Solidi A, 1998, 169, R9-R10.	1.7	12
77	Internal energy and parameters of the order-disorder phase transition in titanium monoxide TiO y. Journal of Experimental and Theoretical Physics, 2013, 116, 945-951.	0.9	12
78	Fragmentation of disordered titanium monoxide of stoichiometric composition TiO. Russian Chemical Bulletin, 2014, 63, 2729-2732.	1.5	12
79	Synthesis of cadmium sulfide CdS nanoparticles in a silicate glass matrix. Inorganic Materials, 2015, 51, 933-938.	0.8	12
80	Domains of the phases V8C7 and V3C2 in bulk carbide VC y. JETP Letters, 2015, 101, 533-538.	1.4	12
81	Silver sulfide nanoparticles with a carbon-containing shell. Inorganic Materials, 2016, 52, 441-446.	0.8	12
82	Relation between Shortâ€Range and Longâ€Range Order in Solid Solutions with Basal B.C.C. and F.C.C. Structures. Physica Status Solidi (B): Basic Research, 1985, 130, 413-420.	1.5	11
83	X-ray transitions for studying the electronic structure of5dmetals. Physical Review B, 2001, 64, .	3.2	11
84	Direct functionalization of the Câ€"H bond in (hetero)arenes: aerobic photoinduced oxidative coupling of azines with aromatic nucleophiles (SN H-reactions) in the presence of a CdS/TiO2 photocatalyst. Russian Chemical Bulletin, 2016, 65, 445-450.	1.5	11
85	Magnetic susceptibility of palladium subjected to severe plastic deformation. Physica Status Solidi (B): Basic Research, 1996, 196, 251-260.	1.5	10
86	Probabilities of octahedral clusters depending on long-range order parameters and composition in nonstoichiometric titanium monoxide TiO y. Journal of Experimental and Theoretical Physics, 2012, 115, 999-1007.	0.9	10
87	Synthesis of a TiO2 Photocatalyst for Dehydrogenative Cross-Coupling of (Hetero)Arenes. Inorganic Materials, 2019, 55, 155-161.	0.8	10
88	Positron lifetime in non-stoichiometric carbides with a B1(NaCl) structure. Journal of Physics Condensed Matter, 1993, 5, 261-266.	1.8	9
89	Preparation of nanocrystalline VO y by high-energy ball milling. Inorganic Materials, 2011, 47, 408-411.	0.8	9
90	Synthesis of a stable colloidal solution of PbS nanoparticles. Inorganic Materials, 2014, 50, 969-975.	0.8	9

#	Article	IF	Citations
91	Influence of the degree of order and nonstoichiometry on the microstructure and microhardness of titanium monoxide. Inorganic Materials, 2017, 53, 1174-1179.	0.8	9
92	A New Ti9O10 Nanophase Prepared by Heat-Treating Nonstoichiometric Milled TiO y Nanopowder. Inorganic Materials, 2018, 54, 568-574.	0.8	9
93	Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe ₉₀ Zr ₇ B ₃ . International Journal of Materials Research, 2003, 94, 1073-1078.	0.8	8
94	Microstructure and microhardness of vanadium oxides in the range VO0.57-VO1.29. Inorganic Materials, 2009, 45, 905-909.	0.8	8
95	Template synthesis of titania on polysaccharides. Russian Chemical Bulletin, 2013, 62, 976-983.	1.5	8
96	Effect of cobalt powder morphology on the properties of WC-Co hard alloys. Inorganic Materials, 2013, 49, 889-893.	0.8	8
97	Nonstoichiometry, structure and properties of nanocrystalline oxides, carbides and sulfides. Russian Chemical Reviews, 2021, 90, 601-626.	6.5	8
98	Formation of the incommensurate ordered phase in TaCy carbide. JETP Letters, 2005, 81, 326-330.	1.4	7
99	The use of 3-mercaptopropyltrimethoxysilane for stabilization of luminescent cadmium sulfide nanoparticles. Doklady Chemistry, 2013, 452, 215-219.	0.9	7
100	Structure and stoichiometry of nanocrystalline silver sulfide. Doklady Physical Chemistry, 2015, 464, 238-243.	0.9	7
101	Structure of a HAp/TiOy Nanocomposite Studied by Vibrational Spectroscopy Techniques. Inorganic Materials, 2018, 54, 898-903.	0.8	7
102	Synthesis of nonstoichiometric titanium dioxide in the hydrogen flow. AIP Conference Proceedings, 2019, , .	0.4	7
103	<i>Ab initio</i> molecular dynamics and high-dimensional neural network potential study of VZrNbHfTa melt. Journal of Physics Condensed Matter, 2020, 32, 214006.	1.8	7
104	Atomic Defects in Transition Metal Carbides and SiC Studied by Positron Annihilation. Materials Research Society Symposia Proceedings, 1993, 327, 299.	0.1	6
105	Cluster probabilities in ordered titanium monoxide TiO y as functions of the long-range order parameters. JETP Letters, 2008, 88, 172-177.	1.4	6
106	Lattice parameter, density, and defect system of VOy. Inorganic Materials, 2009, 45, 666-670.	0.8	6
107	Thermal stability of lead sulfide nanocrystalline films. Glass Physics and Chemistry, 2009, 35, 60-66.	0.7	6
108	Dependence of Van-Vleck paramagnetism on the size of nanocrystals in superstoichiometric TiO y. Journal of Experimental and Theoretical Physics, 2016, 122, 722-726.	0.9	6

#	Article	IF	Citations
109	Irradiation-induced atomic defects in SiC studied by positron annihilation. Applied Physics A: Materials Science and Processing, 1995, 61, 51-53.	2.3	6
110	Rempelet al.Reply:. Physical Review Letters, 2003, 91, .	7.8	5
111	Formation of cadmium sulfide (CdS) nanofilm on a Cd(OH)2/SiO2 precursor layer. Journal of Structural Chemistry, 2010, 51, 1170-1175.	1.0	5
112	Identification of structural vacancies in carbides, oxides, and sulfides by Doppler broadening of the gamma-ray line. JETP Letters, 2010, 92, 146-150.	1.4	5
113	Electronic structure and stability of nonstoichiometric titanium monoxide TiO y with structural vacancies in one of the sublattices. Physics of the Solid State, 2013, 55, 2108-2115.	0.6	5
114	Short-range order in disordered transition metal oxides, carbides, and nitrides with the B1 structure. Physics of the Solid State, 2015, 57, 637-651.	0.6	5
115	Evolution of microstructure of niobium carbide NbC _{0.77} powders. Crystal Research and Technology, 2017, 52, 1700061.	1.3	5
116	Lifetime of Positrons in Nanostructured Nonstoichiometric Silver Sulfide Ag2–δS. JETP Letters, 2018, 107, 4-9.	1.4	5
117	Microinhomogeneity of the Structure of Nanocrystalline Niobium and Vanadium Carbides. JETP Letters, 2018, 108, 253-259.	1.4	5
118	Effect of atomic ordering on the heat-capacity of non-stoichiometric niobium carbide. Physica Status Solidi A, 1984, 86, K11-K14.	1.7	4
119	Structure and Specific Heat of Disordered and Ordered Titanium Monoxide TiOy. Journal of Structural Chemistry, 2003, 44, 235-242.	1.0	4
120	A study of cadmium sulfide nanocrystalline films by grazing incidence X-ray diffraction. Russian Journal of Physical Chemistry A, 2007, 81, 768-772.	0.6	4
121	Quasielastic neutron scattering study of hydrogen motion in NbC0.71H0.28. Journal of Physics Condensed Matter, 2009, 21, 175410.	1.8	4
122	Neutron diffraction analysis of a defect vanadium monoxide close to the equiatomic vanadium monoxide. JETP Letters, 2009, 89, 194-199.	1.4	4
123	Dependence of the size of nanoparticles of lead sulfide PbS on the chemical affinity of its formation reaction. Doklady Physical Chemistry, 2013, 453, 270-273.	0.9	4
124	Positron annihilation sites in nano lead sulfide powders. Journal of Physics: Conference Series, 2013, 443, 012013.	0.4	4
125	NbO disintegration by surfactant-assisted high-energy ball milling. Inorganic Materials, 2014, 50, 398-403.	0.8	4
126	Nanocrystalline VC y powders in the homogeneity range of a disordered cubic phase. Inorganic Materials, 2015, 51, 1243-1250.	0.8	4

#	Article	IF	CITATIONS
127	Synthesis of hybrid nanoparticles based on magnetic Fe3O4 nanoparticles and luminescent CdS nanoparticles. Doklady Chemistry, 2016, 467, 113-117.	0.9	4
128	Size, zeta potential, and semiconductor properties of hybrid CdS–ZnS nanoparticles in a stable aqueous colloidal solution. Russian Journal of Physical Chemistry A, 2017, 91, 1105-1108.	0.6	4
129	Effect of high pressure on the period of the basis lattice and concentration of vacancies in titanium monoxide TiO. JETP Letters, 2017, 106, 354-357.	1.4	4
130	Stability of Defectless Structures of Titanium Monoxide at High Pressures. JETP Letters, 2018, 108, 476-480.	1.4	4
131	Size effect in nonstoichiometric titanium monoxide and vanadium carbide nanocrystals measured by positron lifetime spectroscopy. Mendeleev Communications, 2019, 29, 486-488.	1.6	4
132	Orientation Relationships upon the Structural Transformation of Monoclinic and Cubic Phases in Silver Sulfide. Semiconductors, 2019, 53, 941-946.	0.5	4
133	Atomic Ordering as a New Method of Producing a Nanostructure. , 2003, , 313-327.		4
134	Analysis of the Probability of Synthesizing High-Entropy Alloys in the Systems Ti-Zr-Hf-V-Nb, Gd-Ti-Zr-Nb-Al, and Zr-Hf-V-Nb-Ni. Physical Mesomechanics, 2021, 24, 701-706.	1.9	4
135	Local Static and Dynamic Atomic Displacements in Disordered Niobium Carbide. Physica Status Solidi (B): Basic Research, 1989, 154, 453-459.	1.5	3
136	Disintegration of microcrystalline Zn2SiO4:Mn phosphor powder. Inorganic Materials, 2013, 49, 1019-1022.	0.8	3
137	Morphology and crystal-chemical characteristics of cobalt and nickel nanopowders prepared by thermochemical and electrolytic methods. Inorganic Materials, 2013, 49, 153-158.	0.8	3
138	Photoluminescence of nanosized Zn2SiO4:Mn depending upon preparation method. Journal of Physics: Conference Series, 2014, 552, 012043.	0.4	3
139	Formation of CdS nanoparticles in the matrix of silicate glass and its optical properties. Glass Physics and Chemistry, 2016, 42, 251-256.	0.7	3
140	Synthesis and optical properties of glass with cadmium sulfide nanoparticles. Glass Physics and Chemistry, 2016, 42, 38-42.	0.7	3
141	Diffraction spectra of order–order transition structural states in titanium monoxide. JETP Letters, 2017, 106, 157-161.	1.4	3
142	Production, Properties and Practical Application of High-Entropy Alloys. Steel in Translation, 2020, 50, 243-247.	0.3	3
143	Ordering of structural vacancies in vanadium monoxide of substoichiometric composition. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 677-680.	0.6	2
144	Modeling of short-range order in a defect square lattice. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 1174-1178.	0.6	2

#	Article	IF	Citations
145	Ionic equilibria in alkaline aqueous solutions of metal complex salts. Russian Journal of General Chemistry, 2008, 78, 551-556.	0.8	2
146	Correlation of sulfur atoms in nonmetal planes of lead sulfide films with the D03 structure. Physics of the Solid State, 2010, 52, 2458-2466.	0.6	2
147	Selforganization of nanoparticles in the system of silver-sulfide-mercaptopropylsilane. AIP Conference Proceedings, 2017, , .	0.4	2
148	Superposition of M5X5 superstructures and X-ray diffraction in TiO1.0 titanium monoxide. Journal of Experimental and Theoretical Physics, 2017, 125, 235-245.	0.9	2
149	Photoluminescence of nanostructured Zn2SiO4:Mn2+ ceramics under UV and VUV excitation. Journal of Surface Investigation, 2017, 11, 727-731.	0.5	2
150	DISORDERING IN CADMIUM SULFIDE NANOPARTICLES., 2007,,.		2
151	Rempelet al.Reply:. Physical Review Letters, 2003, 91, .	7.8	1
152	Atomic ordering as a new way of nanostructure creation in solids. Journal of Structural Chemistry, 2004, 45, S14-S22.	1.0	1
153	Short-range order and pair correlations in a binary solid solution with a square lattice. Physics of the Solid State, 2007, 49, 1543-1547.	0.6	1
154	Concentration phase transition near the stoichiometric composition of vanadium monoxide VO1.00. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 1090-1093.	0.6	1
155	Chemical design of the CdS-TiO2 composite photocatalyst. Doklady Physical Chemistry, 2012, 447, 207-209.	0.9	1
156	Role of structural vacancies in the stabilization of the basic B1 structure in nonstoichiometric titanium monoxide TiO y. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 309-312.	0.6	1
157	Order–order transition structural state in titanium monoxide TiO1.0. Physics of the Solid State, 2017, 59, 1190-1195.	0.6	1
158	Short-range order in disordered and ordered niobium carbide NbC0.83 from ab initio calculations. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 373-376.	0.6	1
159	Superimposure of M6X5 Superstructures in Ordered Niobium Carbide NbC0.83. Bulletin of the Russian Academy of Sciences: Physics, 2018, 82, 595-599.	0.6	1
160	Partial pair correlation functions of liquid TiZrNbHfTa high-entropy alloy. AIP Conference Proceedings, 2019, , .	0.4	1
161	Synthesis and properties of azines functionalized graphene with extremely high adsorptive ability to Eu3+ ions. FlatChem, 2022, 33, 100348.	5.6	1
162	Synthesis, modification and characterization of titania nanostructures. AIP Conference Proceedings, 2022, , .	0.4	1

#	Article	IF	CITATIONS
163	Simulation of pair and three-particle correlations in a binary solid solution with a hexagonal lattice. Physics of the Solid State, 2008, 50, 1131-1136.	0.6	0
164	Aggregative stability of the CdS nanoparticles-H2O colloidal dispersion system in the presence of surfactants. Doklady Chemistry, 2012, 443, 86-90.	0.9	0
165	In situ study of the temperature stability of TiO1.05 titanium monooxide using synchrotron radiation. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 134-137.	0.6	O
166	Quantum-chemical study of titanium monoxide nanoparticles with structural vacancies. Doklady Physical Chemistry, 2017, 473, 71-74.	0.9	0
167	Distribution of Vacancies in a Hybrid M(5–11/18)X(5–11/18) Superstructure of a High-Temperature Ordered β-TiO Phase. Physics of the Solid State, 2018, 60, 461-465.	0.6	O
168	CRYSTAL STRUCTURE OF LEAD SULFIDE NANOPARTICLES IN THIN FILMS. , 2009, , .		0
169	Modification of the titanium oxide Ti2O3 powders structure on the duration of mechanical high-energy treatment. AIP Conference Proceedings, 2020, , .	0.4	O
170	Machine learning interatomic potential for molten TiZrHfNb. AIP Conference Proceedings, 2020, , .	0.4	0
171	Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3. International Journal of Materials Research, 2022, 94, 1073-1078.	0.3	O
172	Solubility of Φ ¢iOy/HAp nanocomposites in body simulated fluid. Ceramics International, 2022, 48, 25213-25218.	4.8	0
173	Impact of annealing of nanotubular titanium dioxide in a hydrogen flow on structure and morphology. AIP Conference Proceedings, 2022, , .	0.4	O