
Matteo Zago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2654112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation. Applied Energy, 2018, 228, 1057-1070.	10.1	124
2	Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy. Applied Energy, 2017, 205, 670-682.	10.1	38
3	A Quasi 2D Model of a High Temperature Polymer Fuel Cell for the Interpretation of Impedance Spectra. Fuel Cells, 2014, 14, 926-937.	2.4	32
4	Water transport and flooding in DMFC: Experimental and modeling analyses. Journal of Power Sources, 2012, 217, 381-391.	7.8	29
5	Efficiency Analysis of Independent and Centralized Heating Systems for Residential Buildings in Northern Italy. Energies, 2011, 4, 2115-2131.	3.1	27
6	On the effect of gas diffusion layers hydrophobicity on direct methanol fuel cell performance and degradation. Journal of Power Sources, 2015, 273, 680-687.	7.8	26
7	A combined in-situ and post-mortem investigation on local permanent degradation in a direct methanol fuel cell. Journal of Power Sources, 2016, 306, 49-61.	7.8	26
8	Investigation of vanadium redox flow batteries performance through locally-resolved polarisation curves and impedance spectroscopy: Insight into the effects of electrolyte, flow field geometry and electrode thickness. Journal of Power Sources, 2020, 449, 227588.	7.8	26
9	Experimental investigation on DMFC temporary degradation. International Journal of Hydrogen Energy, 2014, 39, 21647-21656.	7.1	25
10	Effect of anode MPL on water and methanol transport in DMFC: Experimental and modeling analyses. International Journal of Hydrogen Energy, 2014, 39, 21620-21630.	7.1	24
11	Physically-based impedance modeling of the negative electrode in All-Vanadium Redox Flow Batteries: insight into mass transport issues. Electrochimica Acta, 2017, 248, 505-517.	5.2	24
12	Local potential measurement through reference electrodes in vanadium redox flow batteries: Evaluation of overpotentials and electrolytes imbalance. Journal of Power Sources, 2018, 400, 218-224.	7.8	23
13	Experimental analysis of recoverable performance loss induced by platinum oxide formation at the polymer electrolyte membrane fuel cell cathode. Journal of Power Sources, 2020, 455, 227990.	7.8	23
14	Modelling analysis of heterogeneity of ageing in high temperature polymer electrolyte fuel cells: insight into the evolution of electrochemical impedance spectra. Electrochimica Acta, 2016, 222, 596-607.	5.2	19
15	On the actual cathode mixed potential in direct methanol fuel cells. Journal of Power Sources, 2016, 325, 714-722.	7.8	19
16	Experimental investigation of methanol crossover evolution during direct methanol fuel cell degradation tests. Journal of Power Sources, 2014, 249, 103-109.	7.8	15
17	A combined morphological and electrochemical characterization of carbon electrodes in vanadium redox flow batteries: Insights into positive and negative electrode performance. Electrochimica Acta, 2020, 329, 135143.	5.2	15
18	A tri-generation system based on polymer electrolyte fuel cell and desiccant wheel – Part A: Fuel cell system modelling and partial load analysis. Energy Conversion and Management, 2015, 106, 1450-1459.	9.2	14

MATTEO ZAGO

#	Article	IF	CITATIONS
19	A Parametric Analysis on DMFC Anode Degradation. Fuel Cells, 2014, 14, 386-394.	2.4	12
20	Development of innovative flow fields in a vanadium redox flow battery: Design of channel obstructions with the aid of 3D computational fluid dynamic model and experimental validation through locally-resolved polarization curves. Journal of Power Sources, 2022, 526, 231155.	7.8	12
21	A physical model of Direct Methanol Fuel Cell anode impedance. Journal of Power Sources, 2014, 248, 1181-1190.	7.8	11
22	A locally resolved investigation on direct methanol fuel cell uneven components fading: Local cathode catalyst layer tuning for homogeneous operation and reduced degradation rate. Journal of Power Sources, 2018, 404, 135-148.	7.8	11
23	Design and Development of an Innovative Barrier Layer to Mitigate Crossover in Vanadium Redox Flow Batteries. Journal of the Electrochemical Society, 2020, 167, 130535.	2.9	9
24	Local durability optimization of a large-scale direct methanol fuel cell: catalyst layer tuning for homogeneous operation and in-operando detection of localized hydrogen evolution. Journal of Power Sources, 2021, 506, 230218.	7.8	7
25	Unravelling the Contribution of Kinetics and Mass Transport Phenomena to Impedance Spectra in Vanadium Redox Flow Batteries: Development and Validation of a 1D Physics-Based Analytical Model. Journal of the Electrochemical Society, 2020, 167, 110534.	2.9	6
26	A transient multi-scale model for direct methanol fuel cells. Electrochimica Acta, 2017, 232, 215-225.	5.2	5
27	An High Performance Carbon-Nano Onion Electrode for Vanadium Redox Flow Battery. ECS Meeting Abstracts, 2022, MA2022-01, 2036-2036.	0.0	1
28	Redox Flow Batteries: Physics-Based Cell Modeling. , 2021, , .		0
29	Development of a Physics-Based Analytical Impedance Model in Vanadium Redox Flow Batteries: Insight into Local Mass Transport Losses. ECS Meeting Abstracts, 2022, MA2022-01, 2007-2007.	0.0	0
30	Development of an Additional Selective Layer to Mitigate Crossover in Vanadium Redox Flow Batteries: Influence of Composition on Efficiency and Capacity Decay. ECS Meeting Abstracts, 2022, MA2022-01, 467-467.	0.0	0