

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2652903/publications.pdf Version: 2024-02-01

Feilu

#	Article	IF	CITATIONS
1	Wireless Power Transfer for Electric Vehicle Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 4-17.	5.4	1,450
2	A Double-Sided LCC Compensation Network and Its Tuning Method for Wireless Power Transfer. IEEE Transactions on Vehicular Technology, 2015, 64, 2261-2273.	6.3	781
3	Compensation Topologies of High-Power Wireless Power Transfer Systems. IEEE Transactions on Vehicular Technology, 2016, 65, 4768-4778.	6.3	672
4	Modern Advances in Wireless Power Transfer Systems for Roadway Powered Electric Vehicles. IEEE Transactions on Industrial Electronics, 2016, 63, 6533-6545.	7.9	607
5	A Double-Sided <italic>LCLC</italic> -Compensated Capacitive Power Transfer System for Electric Vehicle Charging. IEEE Transactions on Power Electronics, 2015, 30, 6011-6014.	7.9	345
6	A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility. Applied Energy, 2016, 179, 413-425.	10.1	336
7	State of Charge Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering. IEEE Transactions on Vehicular Technology, 2013, 62, 1020-1030.	6.3	333
8	Design Methodology of LLC Resonant Converters for Electric Vehicle Battery Chargers. IEEE Transactions on Vehicular Technology, 2014, 63, 1581-1592.	6.3	331
9	Energy Management for a Power-Split Plug-in Hybrid Electric Vehicle Based on Dynamic Programming and Neural Networks. IEEE Transactions on Vehicular Technology, 2014, 63, 1567-1580.	6.3	274
10	Comparison Study on SS and Double-Sided LCC Compensation Topologies for EV/PHEV Wireless Chargers. IEEE Transactions on Vehicular Technology, 2016, 65, 4429-4439.	6.3	262
11	Integrated \${LCC} \$ Compensation Topology for Wireless Charger in Electric and Plug-in Electric Vehicles. IEEE Transactions on Industrial Electronics, 2015, 62, 4215-4225.	7.9	261
12	A New Integration Method for an Electric Vehicle Wireless Charging System Using LCC Compensation Topology: Analysis and Design. IEEE Transactions on Power Electronics, 2017, 32, 1638-1650.	7.9	237
13	A High-Efficiency Active Battery-Balancing Circuit Using Multiwinding Transformer. IEEE Transactions on Industry Applications, 2013, 49, 198-207.	4.9	229
14	A 4-Plate Compact Capacitive Coupler Design and LCL-Compensated Topology for Capacitive Power Transfer in Electric Vehicle Charging Applications. IEEE Transactions on Power Electronics, 2016, , 1-1.	7.9	209
15	A Dynamic Charging System With Reduced Output Power Pulsation for Electric Vehicles. IEEE Transactions on Industrial Electronics, 2016, 63, 6580-6590.	7.9	208
16	A Misalignment-Tolerant Series-Hybrid Wireless EV Charging System With Integrated Magnetics. IEEE Transactions on Power Electronics, 2019, 34, 1276-1285.	7.9	194
17	A Review on the Recent Development of Capacitive Wireless Power Transfer Technology. Energies, 2017, 10, 1752.	3.1	190
18	Loosely Coupled Transformer Structure and Interoperability Study for EV Wireless Charging Systems. IEEE Transactions on Power Electronics, 2015, 30, 6356-6367.	7.9	185

#	Article	IF	CITATIONS
19	Compact and Efficient Bipolar Coupler for Wireless Power Chargers: Design and Analysis. IEEE Transactions on Power Electronics, 2015, 30, 6130-6140.	7.9	185
20	Multi-Paralleled LCC Reactive Power Compensation Networks and Their Tuning Method for Electric Vehicle Dynamic Wireless Charging. IEEE Transactions on Industrial Electronics, 2016, 63, 6546-6556.	7.9	177
21	A Double-Sided LC-Compensation Circuit for Loosely Coupled Capacitive Power Transfer. IEEE Transactions on Power Electronics, 2018, 33, 1633-1643.	7.9	166
22	An Inductive and Capacitive Combined Wireless Power Transfer System With <italic>LC</italic> -Compensated Topology. IEEE Transactions on Power Electronics, 2016, 31, 8471-8482.	7.9	164
23	Design and Analysis of a Three-Phase Wireless Charging System for Lightweight Autonomous Underwater Vehicles. IEEE Transactions on Power Electronics, 2018, 33, 6622-6632.	7.9	162
24	An Automatic Equalizer Based on Forward–Flyback Converter for Series-Connected Battery Strings. IEEE Transactions on Industrial Electronics, 2017, 64, 5380-5391.	7.9	147
25	Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system. Applied Energy, 2015, 146, 11-19.	10.1	136
26	A Two-Plate Capacitive Wireless Power Transfer System for Electric Vehicle Charging Applications. IEEE Transactions on Power Electronics, 2018, 33, 964-969.	7.9	134
27	Six-Plate Capacitive Coupler to Reduce Electric Field Emission in Large Air-Gap Capacitive Power Transfer. IEEE Transactions on Power Electronics, 2018, 33, 665-675.	7.9	128
28	Frequency Optimization of a Loosely Coupled Underwater Wireless Power Transfer System Considering Eddy Current Loss. IEEE Transactions on Industrial Electronics, 2019, 66, 3468-3476.	7.9	125
29	The Short-Time-Scale Transient Processes in High-Voltage and High-Power Isolated Bidirectional DC–DC Converters. IEEE Transactions on Power Electronics, 2008, 23, 2648-2656.	7.9	124
30	A Switched-Coupling-Capacitor Equalizer for Series-Connected Battery Strings. IEEE Transactions on Power Electronics, 2017, 32, 7694-7706.	7.9	112
31	A Dual-Coupled LCC-Compensated IPT System With a Compact Magnetic Coupler. IEEE Transactions on Power Electronics, 2018, 33, 6391-6402.	7.9	112
32	Load-Independent Wireless Power Transfer System for Multiple Loads Over a Long Distance. IEEE Transactions on Power Electronics, 2019, 34, 9279-9288.	7.9	109
33	Feasibility study on bipolar pads for efficient wireless power chargers. , 2014, , .		108
34	Integrated Coil Design for EV Wireless Charging Systems Using <i>LCC</i> Compensation Topology. IEEE Transactions on Power Electronics, 2018, 33, 9231-9241.	7.9	93
35	A CLLC-compensated high power and large air-gap capacitive power transfer system for electric vehicle charging applications. , 2016, , .		86
36	Adaptive State-of-Charge Estimation Based on a Split Battery Model for Electric Vehicle Applications. IEEE Transactions on Vehicular Technology, 2017, 66, 10889-10898.	6.3	85

#	Article	IF	CITATIONS
37	Analytical Method for Magnetic Field Calculation in a Low-Speed Permanent-Magnet Harmonic Machine. IEEE Transactions on Energy Conversion, 2011, 26, 862-870.	5.2	79
38	Analytical Approach for the Power Management of Blended-Mode Plug-In Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology, 2012, 61, 1554-1566.	6.3	77
39	A Multi-Load Wireless Power Transfer System With Series-Parallel-Series Compensation. IEEE Transactions on Power Electronics, 2019, 34, 7126-7130.	7.9	76
40	A Load-Independent LCC-Compensated Wireless Power Transfer System for Multiple Loads With a Compact Coupler Design. IEEE Transactions on Industrial Electronics, 2020, 67, 4507-4515.	7.9	76
41	Modeling and Analysis of Series-None Compensation for Wireless Power Transfer Systems With a Strong Coupling. IEEE Transactions on Power Electronics, 2019, 34, 1209-1215.	7.9	75
42	A Delta-Structured Switched-Capacitor Equalizer for Series-Connected Battery Strings. IEEE Transactions on Power Electronics, 2018, , 1-1.	7.9	74
43	A Rotation-Resilient Wireless Charging System for Lightweight Autonomous Underwater Vehicles. IEEE Transactions on Vehicular Technology, 2018, 67, 6935-6942.	6.3	71
44	Unified Load-Independent ZPA Analysis and Design in CC and CV Modes of Higher Order Resonant Circuits for WPT Systems. IEEE Transactions on Transportation Electrification, 2019, 5, 977-987.	7.8	71
45	Loss-Minimization-Based Charging Strategy for Lithium-Ion Battery. IEEE Transactions on Industry Applications, 2015, 51, 4121-4129.	4.9	67
46	A Real-Time Battery Thermal Management Strategy for Connected and Automated Hybrid Electric Vehicles (CAHEVs) Based on Iterative Dynamic Programming. IEEE Transactions on Vehicular Technology, 2018, 67, 8077-8084.	6.3	66
47	Revolution of Electric Vehicle Charging Technologies Accelerated by Wide Bandgap Devices. Proceedings of the IEEE, 2021, 109, 985-1003.	21.3	62
48	Realizing Constant Current and Constant Voltage Outputs and Input Zero Phase Angle of Wireless Power Transfer Systems With Minimum Component Counts. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 600-610.	8.0	61
49	An Automotive Onboard AC Heater Without External Power Supplies for Lithium-Ion Batteries at Low Temperatures. IEEE Transactions on Power Electronics, 2018, 33, 7759-7769.	7.9	60
50	An Integrated Heater Equalizer for Lithium-Ion Batteries of Electric Vehicles. IEEE Transactions on Industrial Electronics, 2019, 66, 4398-4405.	7.9	58
51	Fault-Tolerant Wireless Power Transfer System With a Dual-Coupled LCC-S Topology. IEEE Transactions on Vehicular Technology, 2019, 68, 11838-11846.	6.3	57
52	An Improved Soft-Switching Buck Converter With Coupled Inductor. IEEE Transactions on Power Electronics, 2013, 28, 4885-4891.	7.9	52
53	A Tightly Coupled Inductive Power Transfer System for Low-Voltage and High-Current Charging of Automatic Guided Vehicles. IEEE Transactions on Industrial Electronics, 2019, 66, 6867-6875.	7.9	51
54	Hybrid Energy Storage System of an Electric Scooter Based on Wireless Power Transfer. IEEE Transactions on Industrial Informatics, 2018, 14, 4169-4178.	11.3	50

#	Article	IF	CITATIONS
55	Wide Design Range of Constant Output Current Using Double-Sided LC Compensation Circuits for Inductive-Power-Transfer Applications. IEEE Transactions on Power Electronics, 2019, 34, 2364-2374.	7.9	50
56	Battery Cell Identification and SOC Estimation Using String Terminal Voltage Measurements. IEEE Transactions on Vehicular Technology, 2012, 61, 2925-2935.	6.3	49
57	Output power and efficiency sensitivity to circuit parameter variations in double-sided LCC-compensated wireless power transfer system. , 2015, , .		49
58	A New Coil Structure to Reduce Eddy Current Loss of WPT Systems for Underwater Vehicles. IEEE Transactions on Vehicular Technology, 2019, 68, 245-253.	6.3	47
59	An Inductive and Capacitive Integrated Coupler and Its LCL Compensation Circuit Design for Wireless Power Transfer. IEEE Transactions on Industry Applications, 2017, 53, 4903-4913.	4.9	46
60	A high efficiency 3.3 kW loosely-coupled wireless power transfer system without magnetic material. , 2015, , .		45
61	Development of a high efficiency primary side controlled 7kW wireless power charger. , 2014, , .		41
62	Ecological Driving System for Connected/Automated Vehicles Using a Two-Stage Control Hierarchy. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 2373-2384.	8.0	41
63	Sensitivity Analysis of Inductive Power Transfer Systems With Voltage-Fed Compensation Topologies. IEEE Transactions on Vehicular Technology, 2019, 68, 4502-4513.	6.3	38
64	Foreign Object Detection in Wireless Power Transfer Systems. IEEE Transactions on Industry Applications, 2022, 58, 1340-1354.	4.9	38
65	Torque Control of IPMSM in the Field Weakening Region with Improved DC-Link Voltage Utilization. IEEE Transactions on Industrial Electronics, 2014, , 1-1.	7.9	37
66	Loosely Coupled Transformer Coil Design to Minimize EMF Radiation in Concerned Areas. IEEE Transactions on Vehicular Technology, 2016, 65, 4779-4789.	6.3	37
67	A Low-Voltage and High-Current Inductive Power Transfer System With Low Harmonics for Automatic Guided Vehicles. IEEE Transactions on Vehicular Technology, 2019, 68, 3351-3360.	6.3	36
68	Core Temperature Estimation for Self-Heating Automotive Lithium-Ion Batteries in Cold Climates. IEEE Transactions on Industrial Informatics, 2020, 16, 3366-3375.	11.3	35
69	Modelling and analysis of the distortion of stronglyâ€coupled wireless power transfer systems with SS and LCC–LCC compensations. IET Power Electronics, 2019, 12, 1321-1328.	2.1	34
70	A loosely coupled capacitive power transfer system with LC compensation circuit topology. , 2016, , .		33
71	Robust Predictive Battery Thermal Management Strategy for Connected and Automated Hybrid Electric Vehicles Based on Thermoelectric Parameter Uncertainty. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6, 1796-1805.	5.4	33
72	A High-Efficiency and Long-Distance Power-Relay System With Equal Power Distribution. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 1419-1427.	5.4	33

#	Article	IF	CITATIONS
73	Review, Analysis, and Design of Four Basic CPT Topologies and the Application of High-Order Compensation Networks. IEEE Transactions on Power Electronics, 2022, 37, 6181-6193.	7.9	32
74	Modeling and Analysis of a Strongly Coupled Series–Parallel-Compensated Wireless Power Transfer System. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 1364-1370.	5.4	31
75	Three-Coil Wireless Charging System for Metal-Cover Smartphone Applications. IEEE Transactions on Power Electronics, 2020, 35, 4847-4858.	7.9	31
76	An NFC-Connected Coupler Using IPT-CPT-Combined Wireless Charging for Metal-Cover Smartphone Applications. IEEE Transactions on Power Electronics, 2021, 36, 6323-6338.	7.9	31
77	An LC-Compensated Electric Field Repeater for Long-Distance Capacitive Power Transfer. IEEE Transactions on Industry Applications, 2017, 53, 4914-4922.	4.9	30
78	DC Circuit Breakers: A Technology Development Status Survey. IEEE Transactions on Smart Grid, 2022, 13, 3915-3928.	9.0	29
79	Design of a high efficiency 22 kW wireless power transfer system for EVs fast contactless charging stations. , 2014, , .		28
80	Fault Current Bypass-Based LVDC Solid-State Circuit Breakers. IEEE Transactions on Power Electronics, 2022, 37, 7-13.	7.9	28
81	Implementing Symmetrical Structure in MOV-RCD Snubber-Based DC Solid-State Circuit Breakers. IEEE Transactions on Power Electronics, 2022, 37, 6051-6061.	7.9	28
82	A Power Relay System With Multiple Loads Using Asymmetrical Coil Design. IEEE Transactions on Industrial Electronics, 2021, 68, 1188-1196.	7.9	27
83	A Novel Capacitive Coupler Array With Free-Positioning Feature for Mobile Tablet Applications. IEEE Transactions on Power Electronics, 2019, 34, 6014-6019.	7.9	26
84	An Electric Roadway System Leveraging Dynamic Capacitive Wireless Charging: Furthering the Continuous Charging of Electric Vehicles. IEEE Electrification Magazine, 2020, 8, 52-60.	1.8	26
85	A Two-Layer Real-Time Optimization Control Strategy for Integrated Battery Thermal Management and HVAC System in Connected and Automated HEVs. IEEE Transactions on Vehicular Technology, 2021, 70, 6567-6576.	6.3	25
86	A Comparison Study of the Model Based SOC Estimation Methods for Lithium-Ion Batteries. , 2013, , .		24
87	A dynamic capacitive power transfer system with reduced power pulsation. , 2016, , .		24
88	Insulated Coupler Structure Design for the Long-Distance Freshwater Capacitive Power Transfer. IEEE Transactions on Industrial Informatics, 2020, 16, 5191-5201.	11.3	24
89	Review of Load-Independent Constant-Current and Constant-Voltage Topologies for Domino-Type Multiple-Load Inductive Power Relay System. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3, 199-210.	3.9	21
90	An Improved Design Methodology of the Double-Sided <i>LC</i> -Compensated CPT System Considering the Inductance Detuning. IEEE Transactions on Power Electronics, 2019, 34, 11396-11406.	7.9	20

#	Article	IF	CITATIONS
91	Overvoltage Estimation by Stray Inductances During Turn-off of a 500 kV/25 kA DC Circuit Breaker. IEEE Transactions on Power Electronics, 2021, 36, 7400-7406.	7.9	19
92	State-of-Health Estimation for Lithium-Ion Batteries Based on Decoupled Dynamic Characteristic of Constant-Voltage Charging Current. IEEE Transactions on Transportation Electrification, 2022, 8, 2070-2079.	7.8	19
93	A switched-coupling-capacitor equalizer for series-connected battery strings. , 2017, , .		18
94	A Domino-Type Load-Independent Inductive Power Transfer System With Hybrid Constant-Current and Constant-Voltage Outputs. IEEE Transactions on Power Electronics, 2021, 36, 8824-8834.	7.9	18
95	Feasibility Study of the High-Power Underwater Capacitive Wireless Power Transfer for the Electric Ship Charging Application. , 2019, , .		17
96	A 4 kV/120 A SiC Solid-State DC Circuit Breaker Powered By a Load-Independent IPT System. IEEE Transactions on Industry Applications, 2022, 58, 1115-1125.	4.9	17
97	A DC Solid-State Circuit Breaker Based on Transient Current Commutation. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 4614-4625.	5.4	17
98	ZVS double-side LCC compensated resonant inverter with magnetic integration for electric vehicle wireless charger. , 2015, , .		16
99	A Metal Object Detection System with Multilayer Detection Coil Layouts for Electric Vehicle Wireless Charging. Energies, 2020, 13, 2960.	3.1	16
100	A New Approach to Model Reverse Recovery Process of a Thyristor for HVdc Circuit Breaker Testing. IEEE Transactions on Power Electronics, 2021, 36, 1591-1601.	7.9	16
101	A dual-coupled LCC-compensated IPT system to improve misalignment performance. , 2017, , .		15
102	A Multiload Inductive Power Transfer Repeater System With Constant Load Current Characteristics. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 3533-3541.	5.4	15
103	Innovated Approach of Predictive Thermal Management for High-Speed Propulsion Electric Machines in More Electric Aircraft. IEEE Transactions on Transportation Electrification, 2020, 6, 1551-1561.	7.8	15
104	Coordination of Ultrafast Solid-State Circuit Breakers in Radial DC Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 4690-4702.	5.4	15
105	A large air-gap capacitive power transfer system with a 4-plate capacitive coupler structure for electric vehicle charging applications. , 2016, , .		13
106	Model Reference Adaptive Control for Hybrid Electric Vehicle With Dual Clutch Transmission Configurations. IEEE Transactions on Vehicular Technology, 2018, 67, 991-999.	6.3	13
107	Comprehensive Design and Optimization of an Onboard Resonant Self-Heater for EV Battery. IEEE Transactions on Transportation Electrification, 2021, 7, 452-463.	7.8	13
108	Capacitive Power Transfer With Series-Parallel Compensation for Step-Up Voltage Output. IEEE Transactions on Industrial Electronics, 2022, 69, 5604-5614.	7.9	13

#	Article	IF	CITATIONS
109	An NFC-CPT-Combined Coupler With Series- None Compensation for Metal-Cover Smartphone Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 3758-3769.	5.4	12
110	An S-CLC Compensated Load-Independent Inductive Power Relay System With Constant Voltage Outputs. IEEE Transactions on Power Electronics, 2021, 36, 5157-5168.	7.9	12
111	Transient Temperature Response of Pulsed-Laser-Induced Heating for Nanoshell-Based Hyperthermia Treatment. IEEE Nanotechnology Magazine, 2009, 8, 697-706.	2.0	11
112	Design of a Double-Sided <i>LCLC</i> -Compensated Capacitive Power Transfer System With Predesigned Coupler Plate Voltage Stresses. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 128-137.	5.4	11
113	A Two-Stage Real-Time Optimized EV Battery Cooling Control Based on Hierarchical and Iterative Dynamic Programming and MPC. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 11677-11687.	8.0	11
114	Modeling and Control of an Integrated Self-Heater for Automotive Batteries Based on Traction Motor Drive Reconfiguration. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11, 384-395.	5.4	11
115	Investigation of Limitations in Passive Voltage Clamping-Based Solid-State DC Circuit Breakers. IEEE Open Journal of Power Electronics, 2022, 3, 209-221.	5.7	11
116	A high efficiency and compact inductive power transfer system compatible with both 3.3kW and 7.7kW receivers. , 2017, , .		10
117	Long-Distance and High-Power Capacitive Power Transfer based on the Double-Sided LC Compensation: Analysis and Design. , 2019, , .		10
118	Repeater coilâ€based wireless power transfer system powering multiple gate drivers of seriesâ€connected IGBTs. IET Power Electronics, 2020, 13, 1722-1728.	2.1	10
119	Ultrafast Solid-State Circuit Breaker With a Modular Active Injection Circuit. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3, 733-743.	3.9	10
120	Capacitive Couple-Based Transient Current Commutation in Solid-State Circuit Breakers. IEEE Transactions on Power Electronics, 2022, 37, 4973-4978.	7.9	10
121	Fault Current Bypass-Based DC SSCB Using TIM-Pack Switch. IEEE Transactions on Industrial Electronics, 2023, 70, 4300-4304.	7.9	9
122	Modeling of the Starting Performance of Large Solid-Pole Synchronous Motors Using Equivalent Circuit Approach. IEEE Transactions on Magnetics, 2009, 45, 5399-5404.	2.1	8
123	An inductive and capacitive integrated coupler and its LCL compensation circuit design for wireless power transfer. , 2016, , .		8
124	Eddy Current Loss Analysis of Underwater Wireless Power Transfer System. , 2018, , .		8
125	Study on Parasitic Capacitance Effect in High Power Inductive Power Transfer System. , 2019, , .		8
126	Current-Fed Capacitive Power Transfer With Parallel–Series Compensation for Voltage Step-Down. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3, 454-464.	3.9	8

#	Article	IF	CITATIONS
127	High-Efficiency Bilateral S–SP Compensated Multiload IPT System With Constant-Voltage Outputs. IEEE Transactions on Industrial Informatics, 2022, 18, 901-910.	11.3	8
128	Loss minimization-based charging strategy for lithium-ion battery. , 2014, , .		7
129	Longâ€distance wireless power transfer system powering multiple loads with constant voltage outputs using Sâ€SP compensation. IET Power Electronics, 2020, 13, 1729-1734.	2.1	7
130	A Novel Ultrafast Transient Constant on-Time Buck Converter for Multiphase Operation. IEEE Transactions on Power Electronics, 2021, 36, 13096-13106.	7.9	7
131	An Ultra-Fast Wireless Charging System with a Hull-Compatible Coil Structure for Autonomous Underwater Vehicles (AUVs). , 2022, , .		7
132	An LC compensated electric field repeater for long distance capacitive power transfer. , 2016, , .		6
133	Investigation of negative permeability metamaterials for wireless power transfer. AIP Advances, 2017, 7, 115316.	1.3	6
134	A Compact and Low-Distortion Inductive Charging System for Automatic Guided Vehicles Based on LCC Compensation and Integrated Magnetic Coupler. , 2019, , .		6
135	Development of a Dielectric-Gas-Based Single-Phase Electrostatic Motor. IEEE Transactions on Industry Applications, 2019, 55, 2592-2600.	4.9	6
136	Guest EditorialSpecial Issue on Wireless Power Transfer. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 1-3.	5.4	5
137	A star-structured switched-capacitor equalizer for series-connected battery strings. , 2017, , .		5
138	Design and optimization of a dielectric-gas-based single-phase electrostatic motor. , 2018, , .		5
139	Challenges in the Z-Class Compatible Inductive Power Transfer System Considering the Wide Varying Range of the Coupling Coefficient. , 2019, , .		5
140	Output Power Regulation of a Series-Series Inductive Power Transfer System Based on Hybrid Voltage and Frequency Tuning Method for Electric Vehicle Charging. IEEE Transactions on Industrial Electronics, 2022, 69, 9927-9937.	7.9	5
141	A data-driven bias correction method based lithium-ion battery modeling approach for electric vehicles application. , 2014, , .		4
142	Guest Editorial Special Issue on Wireless Power Transfer. IEEE Transactions on Power Electronics, 2015, 30, 6015-6016.	7.9	4
143	Temperature-dependent performance of lithium ion batteries in electric vehicles. , 2015, , .		4
144	A reverse-coupled bipolar coil structure for an integrated LCC-compensated inductive power transfer		4

system., 2018,,.

#	Article	IF	CITATIONS
145	High Power Capacitive Power Transfer for Electric Aircraft Charging Application. , 2019, , .		4
146	A 2m Quasi-Wireless Capacitive Power Transfer (CPT) System Using Earth Ground as the Current-Returning Path. , 2019, , .		4
147	Sensitivity Investigation and Mitigation on Power and Efficiency to Resonant Parameters in an LCC Network for Inductive Power Transfer. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3, 443-453.	3.9	4
148	Metalâ€rimâ€connected inductive coupler for smartwatch applications. IET Power Electronics, 2020, 13, 3428-3434.	2.1	4
149	A 4kV/100A SiC MOSFETs-based solid state DC circuit breaker with low stray inductances and powered by a load-independent wireless power transfer system. , 2020, , .		4
150	High-Frequency High Step-Up Inductive Power Transfer-Based Capacitor Charger in Active Injection DC Circuit Breakers. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3, 572-582.	3.9	4
151	Medium Voltage Pulse Power Generator for Accurate Current Interruption. IEEE Transactions on Industrial Electronics, 2023, 70, 3604-3615.	7.9	4
152	Optimized Design of an Onboard Resonant Self-Heater for Automotive Lithium-Ion Batteries at Cold Climates. , 2019, , .		3
153	The High Order Harmonic Distortion Phenomenon in the Strongly Coupled IPT System and Its Reduction Method. , 2019, , .		3
154	Output Power Control of an S-S IPT System Based on Voltage and Frequency Tuning for EV Charging. , 2021, , .		3
155	Wireless Series-Parallel Capacitor Charger for DC Circuit Breaker Applications. , 2021, , .		3
156	Compact Z-Impedance Compensation for Inductive Power Transfer and its Capacitance Tuning Method. IEEE Transactions on Industrial Electronics, 2023, 70, 3627-3640.	7.9	3
157	A finite-set model-based predictive battery thermal management in connected and automated hybrid electric vehicles. , 2018, , .		2
158	A Double-sided Z-Impedance Compensated Inductive Power Transfer System. , 2021, , .		2
159	A π-type Compensated Ferrite-Free Domino IPT System for DC Circuit Breakers. IEEE Transactions on Power Electronics, 2022, 37, 7518-7527.	7.9	2
160	Multiphase Interleaved IPT Based Current-Source Converter for High-Current Application. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3, 583-593.	3.9	2
161	A 4kV/100A DC Solid-State Circuit Breaker with Soft Turn-off Operation. , 2022, , .		2
162	A Compact Onboard Battery Self-Heater for All-Electric Aircraft Applications at Cold Climates. , 2019, ,		1

#	Article	IF	CITATIONS
163	A Diode-Free MOV ² -RC Snubber for Solid-State Circuit Breaker. , 2022, , .		1
164	Impacts of the Detuning of Compensation Inductances to the Performance of a Double-Sided LC-Compensated CPT System. , 2019, , .		0
165	A Z-Class LCC-P Compensated IPT System with a Reverse Coupled Compensation Inductor. , 2021, , .		0
166	A Load-independent Domino IPT System with Ï \in -type Compensation Network. , 2021, , .		0
167	An effective fault management scheme and comprehensive double lineâ€frequency ripple propagation analysis for MVDC networks. IET Generation, Transmission and Distribution, 0, , .	2.5	0
168	Guest Editorial Special Issue on Advanced and Emerging Technologies of High-efficiency and Long-distance Wireless Power Transfer Systems. IEEE Transactions on Industry Applications, 2021, , 1-1.	4.9	0
169	Advanced Wireless Power Transfer Technologies. Energies, 2022, 15, 3131.	3.1	0
170	Compact PCB Coil-based Bilateral Inductive Power Relay System Powering Multiple Gate Drivers with Reliable Voltage Isolation. , 2022, , .		0