
Robert K Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2652659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The application of the specular reflection of neutrons to the study of surfaces and interfaces. Journal of Physics Condensed Matter, 1990, 2, 1369-1412.	1.8	505
2	Surfactant layers at the air/water interface: structure and composition. Advances in Colloid and Interface Science, 2000, 84, 143-304.	14.7	414
3	Polymer/surfactant interactions at the air/water interface. Advances in Colloid and Interface Science, 2007, 132, 69-110.	14.7	395
4	Recent advances in the study of chemical surfaces and interfaces by specular neutron reflection. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3899-3917.	1.7	319
5	Boundary lubrication under water. Nature, 2006, 444, 191-194.	27.8	304
6	Adsorption of Dodecyl Sulfate Surfactants with Monovalent Metal Counterions at the Air-Water Interface Studied by Neutron Reflection and Surface Tension. Journal of Colloid and Interface Science, 1993, 158, 303-316.	9.4	239
7	Structure of aqueous decyltrimethylammonium bromide solutions at the air water interface studied by the specular reflection of neutrons. The Journal of Physical Chemistry, 1989, 93, 381-388.	2.9	174
8	Neutron Reflectivity Studies of the Surface Excess of Gemini Surfactants at the Airâ^'Water Interface. Langmuir, 1999, 15, 4392-4396.	3.5	160
9	The Effect of Solution pH on the Structure of Lysozyme Layers Adsorbed at the Silicaâ^'Water Interface Studied by Neutron Reflection. Langmuir, 1998, 14, 438-445.	3.5	158
10	Neutron reflection study of bovine beta-casein adsorbed on OTS self-assembled monolayers. Science, 1995, 267, 657-660.	12.6	152
11	The Adsorption of Oppositely Charged Polyelectrolyte/Surfactant Mixtures:Â Neutron Reflection from Dodecyl Trimethylammonium Bromide and Sodium Poly(styrene sulfonate) at the Air/Water Interface. Langmuir, 2002, 18, 4748-4757.	3.5	148
12	Comparison of neutron reflection and surface tension measurements of the surface excess of tetradecyltrimethylammonium bromide layers at the air/water interface. The Journal of Physical Chemistry, 1992, 96, 1383-1388.	2.9	147
13	Organization of Polymerâ^'Surfactant Mixtures at the Airâ^'Water Interface: Sodium Dodecyl Sulfate and Poly(dimethyldiallylammonium chloride). Langmuir, 2002, 18, 5147-5153.	3.5	136
14	Structure of a cationic surfactant layer at the silica-water interface. Langmuir, 1990, 6, 1031-1034.	3.5	130
15	Investigation of Mixing in Binary Surfactant Solutions by Surface Tension and Neutron Reflection:Â Anionic/Nonionic and Zwitterionic/Nonionic Mixtures. Journal of Physical Chemistry B, 1997, 101, 9215-9223.	2.6	130
16	Gemini Surfactant/DNA Complex Monolayers at the Airâ^'Water Interface:Â Effect of Surfactant Structure on the Assembly, Stability, and Topography of Monolayers. Langmuir, 2002, 18, 6222-6228.	3.5	130
17	The Analysis and Interpretation of Neutron and X-ray Specular Reflection. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, 11-41.	0.3	129
18	Thermodynamics of Molecular Self-Assembly of Cationic Gemini and Related Double Chain Surfactants in Aqueous Solution. Journal of Physical Chemistry B, 2001, 105, 3105-3108.	2.6	128

#	Article	IF	CITATIONS
19	Neutron reflection from wet interfaces. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 995-1018.	1.7	122
20	Adsorption of Oppositely Charged Polyelectrolyte/Surfactant Mixtures. Neutron Reflection from Alkyl Trimethylammonium Bromides and Sodium Poly(styrenesulfonate) at the Air/Water Interface:Â The Effect of Surfactant Chain Length. Langmuir, 2003, 19, 3712-3719.	3.5	122
21	Adsorption of Sodium Dodecyl Sulfate at the Surface of Aqueous Solutions of Poly(vinylpyrrolidone) Studied by Neutron Reflection. Langmuir, 1998, 14, 1637-1645.	3.5	119
22	Determination of the structure of a surfactant layer adsorbed at the silica/water interface by neutron reflection. Chemical Physics Letters, 1989, 162, 196-202.	2.6	118
23	The Composition and Structure of Sodium Dodecyl Sulfate-Dodecanol Mixtures Adsorbed at the Air-Water Interface: A Neutron Reflection Study. Journal of Colloid and Interface Science, 1995, 174, 441-455.	9.4	117
24	Study of the adsorption from aqueous solution of hexaethylene glycol monododecyl ether on silica substrates using the technique of neutron reflection. Langmuir, 1992, 8, 1204-1210.	3.5	115
25	Neutron Reflection from Hexadecyltrimethylammonium Bromide Adsorbed on Smooth and Rough Silicon Surfaces. Langmuir, 1996, 12, 6036-6043.	3.5	115
26	Effect of pH on the Adsorption of Bovine Serum Albumin at the Silica/Water Interface Studied by Neutron Reflection. Journal of Physical Chemistry B, 1999, 103, 3727-3736.	2.6	115
27	Neutron Reflection from Hexadecyltrimethylammonium Bromide Adsorbed at the Air/Liquid Interface: The Variation of the Hydrocarbon Chain Distribution with Surface Concentration. The Journal of Physical Chemistry, 1994, 98, 11519-11526.	2.9	114
28	Structural conformation of lysozyme layers at the air/water interface studied by neutron reflection. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3279-3287.	1.7	112
29	Structure of a Dodecyltrimethylammonium Bromide Layer at the Air/Water Interface Determined by Neutron Reflection: Comparison of the Monolayer Structure of Cationic Surfactants with Different Chain Lengths. Langmuir, 1995, 11, 1001-1008.	3.5	111
30	Structure of a tetradecyltrimethylammonium bromide layer at the air/water interface determined by neutron reflection. The Journal of Physical Chemistry, 1992, 96, 1373-1382.	2.9	109
31	Limitations in the Application of the Gibbs Equation to Anionic Surfactants at the Air/Water Surface: Sodium Dodecylsulfate and Sodium Dodecylmonooxyethylenesulfate Above and Below the CMC. Langmuir, 2013, 29, 9335-9351.	3.5	109
32	The use of contrast variation in the specular reflection of neutrons from interfaces. Physica B: Condensed Matter, 1991, 173, 143-156.	2.7	108
33	Direct determination by neutron reflection of the structure of triethylene glycol monododecyl ether layers at the air/water interface. Langmuir, 1993, 9, 1352-1360.	3.5	108
34	Adsorption of Polyelectrolyte/Surfactant Mixtures at the Airâ^'Solution Interface: Poly(ethyleneimine)/Sodium Dodecyl Sulfate. Langmuir, 2005, 21, 10061-10073.	3.5	108
35	Study of an Adsorbed Layer of Hexadecyltrimethylammonium Bromide Using the Technique of Neutron Reflection. Journal of Colloid and Interface Science, 1994, 162, 304-310.	9.4	104
36	Macroscopic Modeling of the Surface Tension of Polymerâ^'Surfactant Systems. Langmuir, 2007, 23, 6042-6052.	3.5	100

#	Article	IF	CITATIONS
37	Diffusion of Water in Li-Montmorillonite Studied by Quasielastic Neutron Scattering. Clays and Clay Minerals, 1981, 29, 241-248.	1.3	97
38	Structure of Monolayers of Tetraethylene Glycol Monododecyl Ether Adsorbed on Self-Assembled Monolayers on Silicon:Â A Neutron Reflectivity Study. Langmuir, 1996, 12, 477-486.	3.5	97
39	Binding of Sodium Dodecyl Sulfate with Linear and Branched Polyethyleneimines in Aqueous Solution at Different pH Values. Langmuir, 2006, 22, 1526-1533.	3.5	97
40	Detailed Structure of the Hydrocarbon Chain in a Surfactant Monolayer at the Air/Water Interface: Neutron Reflection from Hexadecyltrimethylammonium Bromide. The Journal of Physical Chemistry, 1995, 99, 8233-8243.	2.9	96
41	Solution Self-Assembly and Adsorption at the Airâ^'Water Interface of the Monorhamnose and Dirhamnose Rhamnolipids and Their Mixtures. Langmuir, 2010, 26, 18281-18292.	3.5	96
42	Polyelectrolyte/surfactant mixtures at the air–solution interface. Current Opinion in Colloid and Interface Science, 2006, 11, 337-344.	7.4	95
43	Neutron reflection from a layer of monododecyl hexaethylene glycol adsorbed at the air-liquid interface: the configuration of the ethylene glycol chain. The Journal of Physical Chemistry, 1993, 97, 8012-8020.	2.9	94
44	Solution and Adsorption Behavior of the Mixed Surfactant System Sodium Dodecyl Sulfate/n-Hexaethylene Glycol Monododecyl Ether. Langmuir, 1995, 11, 2496-2503.	3.5	93
45	Neutron Reflectivity Studies of the Adsorption of Aerosol-OT at the Air/Water Interface:Â The Surface Excess. Langmuir, 1997, 13, 3681-3685.	3.5	90
46	The Adsorption of Oppositely Charged Polyelectrolyte/Surfactant Mixtures at the Air/Water Interface:  Neutron Reflection from Dodecyl Trimethylammonium Bromide/Sodium Poly(styrene) Tj ETQq	0 0 0 ญชี7 /C)vei sis ck 10 T
47	Application of the Gibbs Equation to the Adsorption of Nonionic Surfactants and Polymers at the Air–Water Interface: Comparison with Surface Excesses Determined Directly using Neutron Reflectivity. Langmuir, 2013, 29, 9324-9334.	3.5	88
48	Apparent Anomalies in Surface Excesses Determined from Neutron Reflection and the Gibbs Equation in Anionic Surfactants with Particular Reference to Perfluorooctanoates at the Air/Water Interface. Langmuir, 1996, 12, 2446-2453.	3.5	87
49	Structure and Composition of Mixed Surfactant Micelles of Sodium Dodecyl Sulfate and Hexaethylene Glycol Monododecyl Ether and of Hexadecyltrimethylammonium Bromide and Hexaethylene Glycol Monododecyl Ether. Journal of Physical Chemistry B, 1999, 103, 5204-5211.	2.6	85
50	Aggregation of the Naturally Occurring Lipopeptide, Surfactin, at Interfaces and in Solution: An Unusual Type of Surfactant?. Langmuir, 2009, 25, 4211-4218.	3.5	85
51	The crystalline structures of the even alkanes hexane, octane, decane, dodecane and tetradecane monolayers adsorbed on graphite at submonolayer coverages and from the liquidElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b108190j/. Physical Chemistry Chemical Physics. 2002. 4. 345-351.	2.8	84
52	Oxidation of oleic acid at the air–water interface and its potential effects on cloud critical supersaturations. Physical Chemistry Chemical Physics, 2009, 11, 7699.	2.8	83
53	Neutron Diffraction from Clay-Water Systems. Clays and Clay Minerals, 1979, 27, 39-52.	1.3	81
54	Thermodynamics of Interaction between Cationic Gemini Surfactants and Hydrophobically Modified Polymers in Aqueous Solutions. Journal of Physical Chemistry B, 2002, 106, 2153-2159.	2.6	81

#	Article	IF	CITATIONS
55	Equilibrium Surface Adsorption Behavior in Complex Anionic/Nonionic Surfactant Mixtures. Langmuir, 2007, 23, 10140-10149.	3.5	80
56	Neutron Reflection from a Layer of Monododecyl Octaethylene Glycol Adsorbed at the Air-Liquid Interface: The Structure of the Layer and the Effects of Temperature. The Journal of Physical Chemistry, 1994, 98, 6559-6567.	2.9	77
57	The determination of segment density profiles of polyethylene oxide layers adsorbed at the air-water interface. Polymer, 1996, 37, 109-114.	3.8	77
58	Composition of Supported Model Membranes Determined by Neutron Reflection. Langmuir, 2005, 21, 2827-2837.	3.5	77
59	Structure of Mixed Anionic/Nonionic Surfactant Micelles:Â Experimental Observations Relating to the Role of Headgroup Electrostatic and Steric Effects and the Effects of Added Electrolyte. Journal of Physical Chemistry B, 2005, 109, 10760-10770.	2.6	75
60	Limitations in the Use of Surface Tension and the Gibbs Equation To Determine Surface Excesses of Cationic Surfactants. Langmuir, 2014, 30, 6739-6747.	3.5	75
61	Structure of adsorbed layers of ethylene glycol monododecyl ether surfactants with one, two, and four ethylene oxide groups, as determined by neutron reflection. Langmuir, 1993, 9, 2408-2416.	3.5	74
62	Interaction between Poly(ethylene oxide) and Sodium Dodecyl Sulfate Studied by Neutron Reflection. Journal of Physical Chemistry B, 1998, 102, 4912-4917.	2.6	74
63	Formation of supported phospholipid bilayers via co-adsorption with β-d-dodecyl maltoside. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1668, 17-24.	2.6	72
64	Neutron reflection from triethylene glycol monododecyl ether adsorbed at the air-liquid interface: the variation of the hydrocarbon chain distribution with surface concentration. Langmuir, 1993, 9, 2417-2425.	3.5	71
65	Structure of an octadecyltrimethylammonium bromide layer at the air/water interface determined by neutron reflection: systematic errors in reflectivity measurements. The Journal of Physical Chemistry, 1993, 97, 6024-6033.	2.9	70
66	The Structure of Monododecyl Pentaethylene Glycol Monolayers with and without Added Dodecane at the Air/Solution Interface:  A Neutron Reflection Study. Journal of Physical Chemistry B, 1998, 102, 5785-5793.	2.6	70
67	Adsorption of Sodium Dodecyl Sulfate to a Polystyrene/Water Interface Studied by Neutron Reflection and Attenuated Total Reflection Infrared Spectroscopy. Langmuir, 1999, 15, 1017-1023.	3.5	67
68	NEUTRON REFLECTION FROM LIQUID INTERFACES. Annual Review of Physical Chemistry, 2004, 55, 391-426.	10.8	65
69	Mixing Behavior of the Biosurfactant, Rhamnolipid, with a Conventional Anionic Surfactant, Sodium Dodecyl Benzene Sulfonate. Langmuir, 2010, 26, 17958-17968.	3.5	65
70	The structure of the surface of ethanol/water mixtures. Molecular Physics, 1993, 80, 925-939.	1.7	64
71	Neutron Reflectivity of an Adsorbed Water-Soluble Block Copolymer:Â A Surface Transition to Micelle-like Aggregates at the Air/Water Interface. Journal of Physical Chemistry B, 1998, 102, 387-393.	2.6	64
72	Neutron and X-ray reflectometry of interfacial systems in colloid and polymer chemistry. Current Opinion in Colloid and Interface Science, 1996, 1, 23-33.	7.4	63

#	Article	IF	CITATIONS
73	Competitive Adsorption of Simple Linear Alkane Mixtures onto Graphite. Journal of Physical Chemistry B, 1998, 102, 10528-10534.	2.6	63
74	Microcalorimetric Study on Micellization of Nonionic Surfactants with a Benzene Ring or Adamantane in Their Hydrophobic Chains. Journal of Physical Chemistry B, 2005, 109, 16070-16074.	2.6	63
75	Adsorption of SDS and PVP at the air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 94, 125-130.	4.7	62
76	Investigation of Mixing in Binary Surfactant Solutions by Surface Tension and Neutron Reflection:Â Strongly Interacting Anionic/Zwitterionic Mixtures. Journal of Physical Chemistry B, 1998, 102, 8834-8846.	2.6	62
77	The crystalline structures of the odd alkanes pentane, heptane, nonane, undecane, tridecane and pentadecane monolayers adsorbed on graphite at submonolayer coverages and from the liquidElectronic supplementary information (ESI) available: Fractional coordinates of single repeat units of some alkanes at sub-monolayer coverage and of the monolayer coexisting with the liquid. See	2.8	62
78	The Adsorption Behavior of Ionic Surfactants and Their Mixtures with Nonionic Polymers and with Polyelectrolytes of Opposite Charge at the Air–Water Interface. Journal of Physical Chemistry B, 2014, 118, 2769-2783.	2.6	62
79	The Interaction between Sodium Alkyl Sulfate Surfactants and the Oppositely Charged Polyelectrolyte, polyDMDAAC, at the Airâ^Water Interface:Â The Role of Alkyl Chain Length and Electrolyte and Comparison with Theoretical Predictions. Langmuir, 2007, 23, 3128-3136.	3.5	61
80	Structure of Monolayers of Monododecyl Dodecaethylene Glycol at the Airâ^'Water Interface Studied by Neutron Reflection. Journal of Physical Chemistry B, 1997, 101, 10332-10339.	2.6	60
81	Adsorption and self-assembly of biosurfactants studied by neutron reflectivity and small angle neutron scattering: glycolipids, lipopeptides and proteins. Soft Matter, 2012, 8, 578-591.	2.7	58
82	Interaction between Poly(ethylene oxide) and Monovalent Dodecyl Sulfates Studied by Neutron Reflection. Langmuir, 1998, 14, 1990-1995.	3.5	57
83	Multilayers at the surface of solutions of exogenous lung surfactant: Direct observation by neutron reflection. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 228-235.	2.6	57
84	Solution Self-Assembly of the Sophorolipid Biosurfactant and Its Mixture with Anionic Surfactant Sodium Dodecyl Benzene Sulfonate. Langmuir, 2011, 27, 8867-8877.	3.5	57
85	Structure of the surface of a surfactant solution above the critical micelle concentration. The Journal of Physical Chemistry, 1993, 97, 13907-13913.	2.9	56
86	Adsorption of cubic liquid crystalline nanoparticles on model membranes. Soft Matter, 2008, 4, 2267.	2.7	56
87	Structure and Collapse of a Surface-Grown Strong Polyelectrolyte Brush on Sapphire. Langmuir, 2012, 28, 3187-3193.	3.5	56
88	Interaction between Gelatin and Sodium Dodecyl Sulfate at the Air/Water Interface:  A Neutron Reflection Study. Langmuir, 2000, 16, 6546-6554.	3.5	55
89	Organization of Polymerâ~'Surfactant Mixtures at the Airâ~'Water Interface:Â Poly(dimethyldiallylammonium chloride), Sodium Dodecyl Sulfate, and Hexaethylene Glycol Monododecyl Ether. Langmuir, 2002, 18, 5139-5146.	3.5	55
90	Structure and composition of dodecane layers spread on aqueous solutions of tetradecyltrimethylammonium bromide: neutron reflection and surface tension measurements. The Journal of Physical Chemistry, 1992, 96, 10971-10978.	2.9	54

#	Article	IF	CITATIONS
91	Structure of Nonionic Surfactant Layers Adsorbed at the Solid/Liquid Interface on Self-Assembled Monolayers with Different Surface Functionality:Â A Neutron Reflection Study. Langmuir, 1997, 13, 5451-5458.	3.5	53
92	Structure of a Diblock Copolymer Adsorbed at the Hydrophobic Solid/Aqueous Interface:Â Effects of Charge Density on a Weak Polyelectrolyte Brush. Macromolecules, 1999, 32, 2731-2738.	4.8	53
93	Interaction of oppositely charged polyelectrolyte–ionic surfactant mixtures: adsorption of sodium poly(acrylic acid)–dodecyl trimethyl ammonium bromide mixtures at the air–water interface. Soft Matter, 2005, 1, 310.	2.7	53
94	Neutron reflectivity and small angle neutron scattering: An introduction and perspective on recent progress. Current Opinion in Colloid and Interface Science, 2014, 19, 198-206.	7.4	53
95	Adsorption of Mixed Anionic and Nonionic Surfactants at the Hydrophilic Silicon Surface. Langmuir, 2002, 18, 5755-5760.	3.5	52
96	Swelling of n-Butylammonium Vermiculite in Water. Clays and Clay Minerals, 1990, 38, 90-96.	1.3	50
97	Surfactant Adsorption onto Cellulose Surfaces. Langmuir, 2007, 23, 8357-8364.	3.5	49
98	A Neutron Reflectivity Study of the Adsorption of Aerosol-OT on Self-Assembled Monolayers on Silicon. Journal of Colloid and Interface Science, 1996, 178, 531-537.	9.4	48
99	The Impact of Electrolyte on the Adsorption of Sodium Dodecyl Sulfate/Polyethyleneimine Complexes at the Airâ^'Solution Interface. Langmuir, 2007, 23, 3690-3698.	3.5	48
100	Surfactin Structures at Interfaces and in Solution: The Effect of pH and Cations. Journal of Physical Chemistry B, 2011, 115, 4427-4435.	2.6	48
101	Saponin Adsorption at the Air–Water Interface—Neutron Reflectivity and Surface Tension Study. Langmuir, 2018, 34, 9540-9547.	3.5	48
102	Surface composition of mixed surfactant monolayers at concentrations well in excess of the critical micelle concentration. A neutron scattering study. Langmuir, 1993, 9, 1651-1656.	3.5	47
103	Structure and Composition of Dodecane Layers Spread on Aqueous Solutions of Dodecyl- and Hexadecyltrimethylammonium Bromides Studied by Neutron Reflection. The Journal of Physical Chemistry, 1995, 99, 4113-4123.	2.9	47
104	Structure of an Adsorbed Layer ofn-Dodecyl-N,N-dimethylamino Acetate at the Air/Solution Interface As Determined by Neutron Reflection. Journal of Physical Chemistry B, 1997, 101, 7121-7126.	2.6	47
105	Quiescent bilayers at the mica–water interface. Soft Matter, 2013, 9, 7028.	2.7	47
106	Adsorption of Sophorolipid Biosurfactants on Their Own and Mixed with Sodium Dodecyl Benzene Sulfonate, at the Air/Water Interface. Langmuir, 2011, 27, 8854-8866.	3.5	46
107	Interactions of Cationic Gemini Surfactants with Hydrophobically Modified Poly(acrylamides) Studied by Fluorescence and Microcalorimetry. Journal of Physical Chemistry B, 2005, 109, 12850-12855.	2.6	45
108	Adsorption Behavior of Hydrophobin and Hydrophobin/Surfactant Mixtures at the Air–Water Interface. Langmuir, 2011, 27, 11316-11323.	3.5	45

#	Article	IF	CITATIONS
109	Effect of Hydrostatic Pressure on the Swelling of n-Butylammonium Vermiculite. Clays and Clay Minerals, 1989, 37, 474-478.	1.3	44
110	Adsorption of proteins from aqueous solutions on hydrophobic surfaces studied by neutron reflection. Physical Chemistry Chemical Physics, 2000, 2, 5214-5221.	2.8	44
111	Unusual Surface Structure in Layers of Cationic Gemini Surfactants Adsorbed at the Air/Water Interface:Â A Neutron Reflection Study. Langmuir, 2002, 18, 6614-6622.	3.5	44
112	Rotational tunnelling of methane adsorbed on graphite. Molecular Physics, 1981, 44, 533-555.	1.7	43
113	Neutron Reflectivity Studies of the Adsorption of Aerosol-OT at the Airâ^'Water Interface:  The Structure of the Sodium Salt. Journal of Physical Chemistry B, 1997, 101, 1615-1620.	2.6	43
114	Adsorption of Polymer/Surfactant Mixtures at the Airâ^'Water Interface:Â Ethoxylated Poly(ethyleneimine) and Sodium Dodecyl Sulfateâ€. Langmuir, 2003, 19, 7740-7745.	3.5	43
115	The interfacial structure and Young's modulus of peptide films having switchable mechanical properties. Journal of the Royal Society Interface, 2008, 5, 47-54.	3.4	43
116	The Surface and Solution Properties of Dihexadecyl Dimethylammonium Bromide. Langmuir, 2008, 24, 6509-6520.	3.5	43
117	The Impact of Multivalent Counterions, Al ³⁺ , on the Surface Adsorption and Self-Assembly of the Anionic Surfactant Alkyloxyethylene Sulfate and Anionic/Nonionic Surfactant Mixtures. Langmuir, 2010, 26, 16699-16709.	3.5	43
118	Adsorption of the Lamellar Phase of Aerosol-OT at the Solid/Liquid and Air/Liquid Interfaces. Journal of Physical Chemistry B, 1999, 103, 10800-10806.	2.6	42
119	Analysis of the Asymmetric Synergy in the Adsorption of Zwitterionic–lonic Surfactant Mixtures at the Air–Water Interface below and above the Critical Micelle Concentration. Journal of Physical Chemistry B, 2016, 120, 3677-3691.	2.6	42
120	The application of neutron reflection to the study of layers adsorbed at liquid interfaces. Colloids and Surfaces, 1991, 52, 85-106.	0.9	41
121	Solid Monolayers Adsorbed at the Solidâ ''Liquid Interface Studied by Incoherent Elastic Neutron Scattering. Journal of Physical Chemistry B, 1997, 101, 8878-8882.	2.6	41
122	Adsorption and self-assembly properties of the plant based biosurfactant, Glycyrrhizic acid. Journal of Colloid and Interface Science, 2021, 598, 444-454.	9.4	41
123	Structure of a Monolayer of Hexadecyltrimethylammoniump-Tosylate at the Airâ^Water Interface. Journal of the American Chemical Society, 1997, 119, 10227-10228.	13.7	40
124	Aggregation Properties of Cationic Gemini Surfactants with Partially Fluorinated Spacers in Aqueous Solution. Langmuir, 2006, 22, 42-45.	3.5	40
125	Influence of Calcium Ions on Rhamnolipid and Rhamnolipid/Anionic Surfactant Adsorption and Self-Assembly. Langmuir, 2013, 29, 3912-3923.	3.5	40
126	Structure of hydrocarbon chains in surfactant monolayers at the air/water interface: neutron reflection from dodecyl trimethylammonium bromide. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 403.	1.7	39

#	Article	IF	CITATIONS
127	Ordered Structures of Dichain Cationic Surfactants at Interfacesâ€. Langmuir, 2003, 19, 7719-7726.	3.5	39
128	Neutron Reflectometry of Quaternary Gemini Surfactants as a Function of Alkyl Chain Length: Anomalies Arising from Ion Association and Premicellar Aggregation. Langmuir, 2011, 27, 2575-2586.	3.5	39
129	The Formation of Surface Multilayers at the Air–Water Interface from Sodium Polyethylene Glycol Monoalkyl Ether Sulfate/AlCl ₃ Solutions: The Role of the Size of the Polyethylene Oxide Group. Langmuir, 2013, 29, 11656-11666.	3.5	39
130	Manipulation of the Adsorption of Ionic Surfactants onto Hydrophilic Silica Using Polyelectrolytes. Langmuir, 2004, 20, 7177-7182.	3.5	38
131	Adsorption of Polymer–Surfactant Mixtures at the Oil–Water Interface. Langmuir, 2012, 28, 14974-14982.	3.5	38
132	Surface Behavior, Aggregation and Phase Separation of Aqueous Mixtures of Dodecyl Trimethylammonium Bromide and Sodium Oligoarene Sulfonates: the Transition to Polyelectrolyte/Surfactant Behavior. Langmuir, 2012, 28, 327-338.	3.5	38
133	Adsorption of mixed cationic–non-ionic surfactants at the air/water interface. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1773-1779.	1.7	37
134	Multilayering of Surfactant Systems at the Air–Dilute Aqueous Solution Interface. Langmuir, 2015, 31, 7440-7456.	3.5	37
135	The structure and properties of methane adsorbed on graphitized carbon black determined by neutron diffraction. Molecular Physics, 1981, 43, 601-620.	1.7	36
136	Neutron and X-ray Reflectivity Studies of Water-Soluble Block and Statistical Copolymers Adsorbed at the Airâ^Water Interface. Macromolecules, 1996, 29, 6892-6900.	4.8	36
137	The Structure of the Mixed Nonionic Surfactant Monolayer of Monododecyl Triethylene Glycol and Monododecyl Octaethylene Glycol at the Air–Water Interface. Journal of Colloid and Interface Science, 1998, 201, 223-232.	9.4	36
138	Conformal Roughness in the Adsorbed Lamellar Phase of Aerosol-OT at the Airâ^'Water and Liquidâ^'Solid Interfaces. Langmuir, 2001, 17, 5858-5864.	3.5	36
139	Interaction of a Cationic Gemini Surfactant with DNA and with Sodium Poly(styrene sulphonate) at the Air/Water Interface: A Neutron Reflectometry Study. Langmuir, 2009, 25, 4027-4035.	3.5	36
140	Directed microbial biosynthesis of deuterated biosurfactants and potential future application to other bioactive molecules. Applied Microbiology and Biotechnology, 2010, 87, 1347-1354.	3.6	36
141	Destruction and Solubilization of Supported Phospholipid Bilayers on Silica by the Biosurfactant Surfactin. Langmuir, 2010, 26, 7334-7342.	3.5	36
142	Synchrotron XRR study of soft nanofilms at the mica–water interface. Soft Matter, 2012, 8, 5055.	2.7	36
143	β-Casein Adsorption at the Hydrophobized Silicon Oxideâ^'Aqueous Solution Interface and the Effect of Added Electrolyte. Biomacromolecules, 2001, 2, 278-287.	5.4	35
144	Cooperative Tuneable Interactions between a Designed Peptide Biosurfactant and Positional Isomers of SDOBS at the Airâ 'Water Interface. Langmuir, 2009, 25, 4021-4026.	3.5	35

#	Article	IF	CITATIONS
145	Nature of Amineâ^'Surfactant Interactions at the Airâ^'Solution Interface. Langmuir, 2009, 25, 3972-3980.	3.5	35
146	Impact of Model Perfumes on Surfactant and Mixed Surfactant Self-Assembly. Langmuir, 2008, 24, 12209-12220.	3.5	34
147	Adsorption of Polyelectrolyte/Surfactant Mixtures at the Airâ^'Water Interface: Modified Poly(ethyleneimine) and Sodium Dodecyl Sulfate. Langmuir, 2011, 27, 2601-2612.	3.5	34
148	Preferential Adsorption from Binary Mixtures of Short Chain n-Alkanes; The Octaneâ^'Decane System. Journal of Physical Chemistry B, 2001, 105, 8577-8582.	2.6	33
149	Surface and Solution Behavior of the Mixed Dialkyl Chain Cationic and Nonionic Surfactants. Langmuir, 2004, 20, 1269-1283.	3.5	33
150	An ESR Spin Probe Study of the Interaction between Poly(ethylene oxide) and Dodecyl Sulfate Surfactants with Different Monovalent Metal Counterions. Journal of Physical Chemistry B, 1997, 101, 3953-3956.	2.6	32
151	Adsorption of Triblock Copolymers of Ethylene Oxide and Propylene Oxide at the Air/Water Interface: The Surface Excess. Journal of Physical Chemistry B, 2002, 106, 5400-5407.	2.6	32
152	Influence of the Polyelectrolyte Poly(ethyleneimine) on the Adsorption of Surfactant Mixtures of Sodium Dodecyl Sulfate and Monododecyl Hexaethylene Glycol at the Airâ^'Solution Interface. Langmuir, 2006, 22, 8840-8849.	3.5	32
153	Neutron Reflection from Mixtures of Sodium Dodecyl Sulfate and Dodecyl Betaine Adsorbed at the Hydrophobic Solid/Aqueous Interface. Journal of Colloid and Interface Science, 1997, 189, 259-267.	9.4	31
154	Adsorption of Mixed Cationic and Nonionic Surfactants at the Hydrophilic Silicon Surface from Aqueous Solution: The Effect of Solution Composition and Concentrationâ€. Langmuir, 2000, 16, 8879-8883.	3.5	31
155	Neutron reflection study of butanol and hexanol adsorbed at the surface of their aqueous solutions. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 565.	1.7	30
156	Spontaneous Surface Self-Assembly in Protein–Surfactant Mixtures: Interactions between Hydrophobin and Ethoxylated Polysorbate Surfactants. Journal of Physical Chemistry B, 2014, 118, 4867-4875.	2.6	30
157	Tunnelling of hydrogen in alkali metal intercalation compounds. Molecular Physics, 1981, 44, 1257-1269.	1.7	29
158	Neutron Reflectivity of Adsorbed Water-Soluble Block Copolymers at the Air/Water Interface:Â the Effects of Composition and Molecular Weight. Macromolecules, 1998, 31, 7877-7885.	4.8	29
159	Calorimetric Investigation of the Monolayers Formed At Solid-liquid Interface. Magyar Apróvad Közlemények, 1999, 57, 643-651.	1.4	29
160	Adsorption of Nonionic Mixtures at the Air–Water Interface: Effects of Temperature and Electrolyte. Journal of Colloid and Interface Science, 2002, 247, 404-411.	9.4	29
161	Adsorption at Air–Water and Oil–Water Interfaces and Self-Assembly in Aqueous Solution of Ethoxylated Polysorbate Nonionic Surfactants. Langmuir, 2015, 31, 3003-3011.	3.5	29
162	Neutron Reflection from Counterions at the Surface of a Soluble Surfactant Solution. Journal of Physical Chemistry B, 1997, 101, 937-943.	2.6	28

#	Article	IF	CITATIONS
163	Binding of Surfactants onto Preadsorbed Layers of Bovine Serum Albumin at the Silicaâ^'Water Interface. Journal of Physical Chemistry B, 1998, 102, 10307-10315.	2.6	28
164	Binding of Sodium Dodecyl Sulfate to Bovine Serum Albumin Layers Adsorbed at the Silicaâ^'Water Interface. Langmuir, 1998, 14, 6261-6268.	3.5	28
165	β-Casein Adsorption at the Silicon Oxideâ^'Aqueous Solution Interface. Biomacromolecules, 2001, 2, 844-850.	5.4	28
166	Structure of Triblock Copolymers of Ethylene Oxide and Propylene Oxide at the Air/Water Interface Determined by Neutron Reflection. Journal of Physical Chemistry B, 2002, 106, 10641-10648.	2.6	28
167	Self-Assembly of Hydrophobin and Hydrophobin/Surfactant Mixtures in Aqueous Solution. Langmuir, 2011, 27, 10514-10522.	3.5	28
168	Effect of pH, surface charge and counter-ions on the adsorption of sodium dodecyl sulfate to the sapphire/solution interface. Journal of Colloid and Interface Science, 2012, 378, 152-158.	9.4	28
169	The librational ground state of monodeuteromethane adsorbed on the surface of graphite. Journal of Chemical Physics, 1990, 92, 1372-1385.	3.0	27
170	Relating the physical structure and optical properties of conjugated polymers using neutron reflectivity in combination with photoluminescence spectroscopy. Journal of Applied Physics, 2004, 95, 2391-2396.	2.5	27
171	Surface Ordering in Dilute Dihexadecyl Dimethyl Ammonium Bromide Solutions at the Airâ^'Water Interface. Langmuir, 2004, 20, 2265-2269.	3.5	27
172	Adsorption of Hydrophobin–Protein Mixtures at the Air–Water Interface: The Impact of pH and Electrolyte. Langmuir, 2015, 31, 10008-10016.	3.5	27
173	Multilayers formed by polyelectrolyte-surfactant and related mixtures at the air-water interface. Advances in Colloid and Interface Science, 2019, 269, 43-86.	14.7	27
174	Surfactant/biosurfactant mixing: Adsorption of saponin/nonionic surfactant mixtures at the air-water interface. Journal of Colloid and Interface Science, 2020, 574, 385-392.	9.4	27
175	The structure of a methyl iodide monolayer adsorbed on graphite. Molecular Physics, 1989, 67, 439-446.	1.7	26
176	The structure of chloromethane monolayers adsorbed on graphite. Molecular Physics, 1991, 72, 395-411.	1.7	26
177	Thermodynamics of Molecular Self-Assembly of Two Series of Double-Chain Singly Charged Cationic Surfactants. Journal of Physical Chemistry B, 2001, 105, 9576-9580.	2.6	26
178	Self-Assembly in Mixed Dialkyl Chain Cationicâ´'Nonionic Surfactant Mixtures: Dihexadecyldimethyl Ammonium Bromideâ´'Monododecyl Hexaethylene Glycol (Monododecyl Dodecaethylene Glycol) Mixtures. Langmuir, 2008, 24, 7674-7687.	3.5	26
179	Mixed surfactants at the air–water interface. Annual Reports on the Progress of Chemistry Section C, 2010, 106, 14.	4.4	26
180	The structure of a bromomethane monolayer adsorbed on graphite. Molecular Physics, 1991, 72, 413-423.	1.7	25

#	Article	IF	CITATIONS
181	Self-Assembly in Complex Mixed Surfactant Solutions: The Impact of Dodecyl Triethylene Glycol on Dihexadecyl Dimethyl Ammonium Bromide. Langmuir, 2008, 24, 10089-10098.	3.5	25
182	A theoretical analysis of the surface tension profiles of strongly interacting polymer–surfactant systems. Journal of Colloid and Interface Science, 2010, 350, 486-493.	9.4	25
183	The Adsorption and Self-Assembly of Mixtures of Alkylbenzene Sulfonate Isomers and the Role of Divalent Electrolyte. Langmuir, 2011, 27, 6674-6682.	3.5	25
184	The structure of CS2adsorbed on graphite. Molecular Physics, 1988, 65, 991-1000.	1.7	24
185	Neutron specular and off-specular reflection from the surface of aerosol-OT solutions above the critical micelle concentration. Faraday Discussions, 1996, 104, 127.	3.2	24
186	Determination of Surface pKaby the Combination of Neutron Reflection and Surface Tension Measurements. Langmuir, 1997, 13, 6881-6883.	3.5	24
187	Crystalline Monolayer of Dodecanoic Acid Adsorbed on Graphite from n-Heptane Solution. Journal of Physical Chemistry B, 1998, 102, 777-781.	2.6	24
188	Thermodynamics of micellization for partially fluorinated cationic gemini surfactants and related single–chain surfactants in aqueous solution. Journal of Colloid and Interface Science, 2005, 287, 333-337.	9.4	24
189	Interplay between the Surface Adsorption and Solution-Phase Behavior in Dialkyl Chain Cationicâ^'Nonionic Surfactant Mixtures. Langmuir, 2009, 25, 3924-3931.	3.5	24
190	Adsorption Behavior of Hydrophobin and Hydrophobin/Surfactant Mixtures at the Solid–Solution Interface. Langmuir, 2011, 27, 10464-10474.	3.5	24
191	The role of electrolyte and polyelectrolyte on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, at the air–water interface. Journal of Colloid and Interface Science, 2011, 356, 656-664.	9.4	24
192	Kinetics of Surfactant Desorption at an Air–Solution Interface. Langmuir, 2012, 28, 17339-17348.	3.5	24
193	The Formation of Surface Multilayers at the Air–Water Interface from Sodium Diethylene Glycol Monoalkyl Ether Sulfate/AlCl ₃ Solutions: The Role of the Alkyl Chain Length. Langmuir, 2013, 29, 12744-12753.	3.5	24
194	Monolayers of Hexadecyltrimethylammoniump-Tosylate at the Airâ^'Water Interface. 2. Neutron Reflection. Journal of Physical Chemistry B, 1998, 102, 9473-9480.	2.6	23
195	The structure of mixed nonionic surfactant monolayers at the air–water interface: the effects of different alkyl chain lengths. Journal of Colloid and Interface Science, 2003, 262, 235-242.	9.4	23
196	Adsorption of Aromatic Counterions at the Surfactant/Water Interface:Â A Neutron Reflectivity Study of Hydroxybenzoate and Chlorobenzoate Counterions at the Hexadecyl Trimethylammonium Surfactant/Water Interface. Langmuir, 2004, 20, 8054-8061.	3.5	22
197	The Location of the Biosurfactant Surfactin in Phospholipid Bilayers Supported on Silica Using Neutron Reflectometry. Langmuir, 2010, 26, 320-327.	3.5	22
198	Surface Adsorption in Ternary Surfactant Mixtures above the Critical Micelle Concentration: Effects of Asymmetry on the Composition Dependence of the Excess Free Energy. Journal of Physical Chemistry B, 2017, 121, 2825-2838.	2.6	22

#	ARTICLE	IF	CITATIONS
199	Thermodynamics of the Air–Water Interface of Mixtures of Surfactants with Polyelectrolytes, Oligoelectrolytes, and Multivalent Metal Electrolytes. Journal of Physical Chemistry B, 2018, 122, 12411-12427.	2.6	22
200	Neutron and X-Ray Reflectivity Studies of the Adsorption of Aerosol-OT at the Air–Water Interface: The Structure of the Calcium Salt. Journal of Colloid and Interface Science, 1997, 187, 492-497.	9.4	21
201	Adsorption of DNA and Dodecyl Trimethylammonium Bromide Mixtures at the Air/Water Interface:  A Neutron Reflectometry Study. Langmuir, 2008, 24, 1863-1872.	3.5	21
202	Manipulating perfume delivery to the interface using polymer–surfactant interactions. Journal of Colloid and Interface Science, 2016, 466, 220-226.	9.4	21
203	Structure and Composition of the Mixed Monolayer of Hexadecyltrimethylammonium Bromide and Benzyl Alcohol Adsorbed at the Air/Water Interface. Langmuir, 1998, 14, 2139-2144.	3.5	20
204	Effect of Polymer Molecular Weight and Solution pH on the Surface Properties of Sodium Dodecylsulfate-Poly(Ethyleneimine) Mixtures. Langmuir, 2012, 28, 14909-14916.	3.5	20
205	Impact of AlCl ₃ on the Self-Assembly of the Anionic Surfactant Sodium Polyethylene Glycol Monoalkyl Ether Sulfate in Aqueous Solution. Langmuir, 2013, 29, 13359-13366.	3.5	20
206	Self-Assembled Structures of Anionic Hydrophobically Modified Polyacrylamide with Star-Shaped Trimeric and Hexameric Quaternary Ammonium Surfactants. Langmuir, 2014, 30, 6660-6668.	3.5	20
207	Adsorption and self-assembly in methyl ester sulfonate surfactants, their eutectic mixtures and the role of electrolyte. Journal of Colloid and Interface Science, 2018, 516, 456-465.	9.4	20
208	The structure of aqueous tetramethylammonium dodecylsulphate solutions at the air-water interface studied by the specular reflection of neutrons. Molecular Physics, 1989, 68, 33-47.	1.7	19
209	Neutron Reflection Study of a Double-Chained Sugar Surfactant. The Journal of Physical Chemistry, 1996, 100, 10298-10303.	2.9	19
210	Interaction of Polymer and Surfactant at the Airâ^Water Interface: Poly(2-(dimethylamino)ethyl) Tj ETQq0 0 0 rg	BT ₃ Qverlo	ock 10 Tf 50 3
211	Structure of Partially Fluorinated Surfactant Monolayers at the Airâ^Water Interface. Langmuir, 2009, 25, 3957-3965.	3.5	19
212	Adsorption of non-ionic surfactants to the sapphire/solution interface – Effects of temperature and pH. Journal of Colloid and Interface Science, 2012, 369, 287-293.	9.4	19
213	Recent developments and applications of the thermodynamics of surfactant mixing. Molecular Physics, 2019, 117, 3376-3388.	1.7	19
214	Mixing Natural and Synthetic Surfactants: Co-Adsorption of Triterpenoid Saponins and Sodium Dodecyl Sulfate at the Air–Water Interface. Langmuir, 2020, 36, 5997-6006.	3.5	19
215	Determination of the structure of the monolayer of hexadecyltrimethyl ammonium bromide adsorbed at the air-water interface. Physica B: Condensed Matter, 1994, 198, 120-126.	2.7	18
216	A Study of the Interactions in a Ternary Surfactant System in Micelles and Adsorbed Layers. Journal of Physical Chemistry B, 1998, 102, 9708-9713.	2.6	18

#	Article	IF	CITATIONS
217	Adsorption behaviour of the binary mixtures of octane and nonane at sub-monolayer coverage on graphite. Physical Chemistry Chemical Physics, 2001, 3, 3774-3777.	2.8	18
218	Neutron reflection study on soluble and insoluble 9066-9071.	2.5	18
219	Adsorption of Nonionic Surfactant Mixtures at the Hydrophilic Solidâ^'Solution Interface. Langmuir, 2005, 21, 6330-6336.	3.5	18
220	Surface and Solution Properties of Anionic/Nonionic Surfactant Mixtures of Alkylbenzene Sulfonate and Triethyleneglycol Decyl Ether. Langmuir, 2010, 26, 10614-10626.	3.5	18
221	Ion Specific Effects in Trivalent Counterion Induced Surface and Solution Self-Assembly of the Anionic Surfactant Sodium Polyethylene Glycol Monododecyl Ether Sulfate. Langmuir, 2014, 30, 4694-4702.	3.5	18
222	Adsorption of Methyl Ester Sulfonate at the Air–Water Interface: Can Limitations in the Application of the Gibbs Equation be Overcome by Computer Purification?. Langmuir, 2017, 33, 9944-9953.	3.5	18
223	The impact of electrolyte on the adsorption of the anionic surfactant methyl ester sulfonate at the air-solution interface: Surface multilayer formation. Journal of Colloid and Interface Science, 2018, 512, 231-238.	9.4	18
224	Neutron Reflection from Counterions at the Surface Formed by a Charged Insoluble Monolayer. Langmuir, 1997, 13, 2133-2142.	3.5	17
225	Behavior of Nonionic Water Soluble Homopolymers at the Air/Water Interface:Â Neutron Reflectivity and Surface Tension Results for Poly(vinyl methyl ether). Langmuir, 2002, 18, 5064-5073.	3.5	17
226	Solvent distribution in non-ionic surfactant monolayers. Physical Chemistry Chemical Physics, 2002, 4, 2648-2652.	2.8	17
227	Adsorption of Nonionic and Mixed Nonionic/Cationic Surfactants onto Hydrophilic and Hydrophobic Cellulose Thin Films. Langmuir, 2010, 26, 8036-8048.	3.5	17
228	Modifying the Adsorption Properties of Anionic Surfactants onto Hydrophilic Silica Using the pH Dependence of the Polyelectrolytes PEI, Ethoxylated PEI, and Polyamines. Langmuir, 2011, 27, 3569-3577.	3.5	17
229	Interaction of the Anionic Surfactant SDS with a Cellulose Thin Film and the Role of Electrolyte and Poyelectrolyte. 2 Hydrophilic Cellulose. Langmuir, 2012, 28, 10223-10229.	3.5	17
230	Structure of the mixed cationic–non-ionic surfactant monolayer of hexadecyltrimethylammonium bromide and monododecyl hexaethylene glycol at the air/water interface. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1549-1554.	1.7	16
231	Comparison of the Coadsorption of Benzyl Alcohol and Phenyl Ethanol with the Cationic Surfactant, Hexadecyl Trimethyl Ammonium Bromide, at the Air–Water Interface. Journal of Colloid and Interface Science, 2002, 247, 397-403.	9.4	16
232	Effect of Architecture on the Formation of Surface Multilayer Structures at the Air–Solution Interface from Mixtures of Surfactant with Small Poly(ethyleneimine)s. Langmuir, 2012, 28, 6336-6347.	3.5	16
233	Surfactin at the Water/Air Interface and in Solution. Langmuir, 2015, 31, 11097-11104.	3.5	16
234	Structural effects of the dispersing agent polysorbate 80 on liquid crystalline nanoparticles of soy phosphatidylcholine and glycerol dioleate. Soft Matter, 2015, 11, 1140-1150.	2.7	16

#	Article	IF	CITATIONS
235	Self-assembly in dilute mixtures of non-ionic and anionic surfactants and rhamnolipd biosurfactants. Journal of Colloid and Interface Science, 2017, 487, 493-503.	9.4	16
236	Strong synergistic interactions in zwitterionic–anionic surfactant mixtures at the air–water interface and in micelles: The role of steric and electrostatic interactions. Journal of Colloid and Interface Science, 2022, 613, 297-310.	9.4	16
237	Light-emitting dendrimer film morphology: A neutron reflectivity study. Applied Physics Letters, 2010, 96, 263302.	3.3	15
238	Impact of the Degree of Ethoxylation of the Ethoxylated Polysorbate Nonionic Surfactant on the Surface Self-Assembly of Hydrophobin-Ethoxylated Polysorbate Surfactant Mixtures. Langmuir, 2014, 30, 9741-9751.	3.5	15
239	Impact of Electrolyte on Adsorption at the Air–Water Interface for Ternary Surfactant Mixtures above the Critical Micelle Concentration. Langmuir, 2017, 33, 4301-4312.	3.5	15
240	Adsorption at the Air–Water Interface in Biosurfactant–Surfactant Mixtures: Quantitative Analysis of Adsorption in a Five-Component Mixture. Langmuir, 2017, 33, 13027-13039.	3.5	15
241	The structure of alkyl ester sulfonate surfactant micelles: The impact of different valence electrolytes and surfactant structure on micelle growth. Journal of Colloid and Interface Science, 2019, 557, 124-134.	9.4	15
242	Counterion Condensation, the Gibbs Equation, and Surfactant Binding: An Integrated Description of the Behavior of Polyelectrolytes and Their Mixtures with Surfactants at the Air–Water Interface. Journal of Physical Chemistry B, 2020, 124, 6074-6094.	2.6	15
243	Title is missing!. International Journal of Thermophysics, 1999, 20, 19-34.	2.1	14
244	Comparison of positional surfactant isomers for displacement of rubisco protein from the air–water interface. Journal of Colloid and Interface Science, 2011, 360, 617-622.	9.4	14
245	Impact of Model Perfume Molecules on the Self-Assembly of Anionic Surfactant Sodium Dodecyl 6-Benzene Sulfonate. Langmuir, 2013, 29, 3234-3245.	3.5	14
246	Adsorption of Model Perfumes at the Air–Solution Interface by Coadsorption with an Anionic Surfactant. Langmuir, 2013, 29, 3361-3369.	3.5	14
247	Probing the surface of aqueous surfactant-perfume mixed solutions during perfume evaporation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 178-183.	4.7	14
248	Impact of molecular structure, headgroup and alkyl chain geometry, on the adsorption of the anionic ester sulfonate surfactants at the air-solution interface, in the presence and absence of electrolyte. Journal of Colloid and Interface Science, 2019, 544, 293-302.	9.4	14
249	Methyl group rotation in 2,4-hexadiyne. Molecular Physics, 1982, 45, 1035-1051.	1.7	13
250	The structure and composition of mixed cationic and non-ionic surfactant layers adsorbed at the hydrophilic silicon surface. Physica B: Condensed Matter, 1998, 248, 223-228.	2.7	13
251	Adsorption properties of plant based bio-surfactants: Insights from neutron scattering techniques. Advances in Colloid and Interface Science, 2019, 274, 102041.	14.7	13
252	Methyl group tunnelling and torsion in 2,4-hexadiyne. Molecular Physics, 1977, 34, 1771-1778.	1.7	12

#	Article	IF	CITATIONS
253	The Influence of Sorbitol on the Adsorption of Surfactants at the Air–Liquid Interface. Journal of Colloid and Interface Science, 1996, 184, 391-398.	9.4	12
254	The structure and composition of surfactant-polymer mixtures of sodium dodecyl sulphate, hexaethylene glycol monododecyl ether and poly-(dimethyldialyl ammonium chloride) adsorbed at the air-water interface. Journal of Physics Condensed Matter, 2000, 12, 6023-6038.	1.8	12
255	Probing the polymer-electrode interface using neutron reflection. Applied Physics Letters, 2003, 82, 2724-2726.	3.3	12
256	Transition from Vesicles to Small Nanometer Scaled Vesicles, Arising from the Manipulation of Curvature in Dialkyl Chain Cationic/Nonionic Surfactant Mixed Aggregates by the Addition of Straight Chain Alkanols. Langmuir, 2009, 25, 4934-4944.	3.5	12
257	Solution pH and Oligoamine Molecular Weight Dependence of the Transition from Monolayer to Multilayer Adsorption at the Air–Water Interface from Sodium Dodecyl Sulfate/Oligoamine Mixtures. Langmuir, 2013, 29, 5832-5840.	3.5	12
258	The impact of alkyl sulfate surfactant geometry and electrolyte on the co-adsorption of anionic surfactants with model perfumes at the air–solution interface. Journal of Colloid and Interface Science, 2013, 403, 84-90.	9.4	12
259	Surface adsorption and solution aggregation of a novel lauroyl-l-carnitine surfactant. Journal of Colloid and Interface Science, 2021, 591, 106-114.	9.4	12
260	The structure of mixed surfactant monolayers at the air-liquid interface, as studied by specular neutron reflection. Journal of Physics Condensed Matter, 1990, 2, SA411-SA416.	1.8	11
261	The structure and heat capacity of fluoromethane monolayers adsorbed on graphite. Molecular Physics, 1991, 72, 109-120.	1.7	11
262	Composition of mixed surfactant–charged polymer complexes adsorbed at the air/water interface. Faraday Discussions, 1996, 104, 245-260.	3.2	11
263	The structures of micelles of alkytrimethylammonium perfluorocarboxylates and of their adsorbed layers at the air/water interface. Physical Chemistry Chemical Physics, 2002, 4, 3022-3031.	2.8	11
264	β-Casein Adsorption at the Silicon Oxide-Aqueous Solution Interface: Calcium Ion Effects. Biomacromolecules, 2004, 5, 319-325.	5.4	11
265	pH Sensitive Adsorption of Polypeptide/Sodium Dodecyl Sulfate Mixtures. Langmuir, 2006, 22, 7617-7621.	3.5	11
266	Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid–Solution Interfaces. Langmuir, 2015, 31, 6773-6781.	3.5	11
267	Biogenic amine – Surfactant interactions at the air–water interface. Journal of Colloid and Interface Science, 2015, 449, 167-174.	9.4	11
268	Enhanced perfume surface delivery to interfaces using surfactant surface multilayer structures. Journal of Colloid and Interface Science, 2016, 461, 352-358.	9.4	11
269	Self-assembly in saponin mixtures: Escin/tea, tea/glycyrrhizic acid, and escin/glycyrrhizic acid mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127420.	4.7	11
270	Surfactant self-assembly structures and multilayer formation at the solid-solution interface induces by electrolyte, polymers and proteins. Current Opinion in Colloid and Interface Science, 2022, 57, 101541.	7.4	11

#	Article	IF	CITATIONS
271	Monomerâ^'Aggregate Exchange Rates in Dialkyl Chain Cationicâ^'Nonionic Surfactant Mixtures. Langmuir, 2009, 25, 2661-2666.	3.5	10
272	Tuning Polyelectrolyte–Surfactant Interactions: Modification of Poly(ethylenimine) with Propylene Oxide and Blocks of Ethylene Oxide. Langmuir, 2016, 32, 1073-1081.	3.5	10
273	The role of competitive counterion adsorption on the electrolyte induced surface ordering in methyl ester sulfonate surfactants at the air-water interface. Journal of Colloid and Interface Science, 2019, 533, 154-160.	9.4	10
274	The performance of surfactant mixtures at low temperatures. Journal of Colloid and Interface Science, 2019, 534, 64-71.	9.4	10
275	In-Membrane Nanostructuring of Cationic Amphiphiles Affects Their Antimicrobial Efficacy and Cytotoxicity: A Comparison Study between a De Novo Antimicrobial Lipopeptide and Traditional Biocides. Langmuir, 2022, 38, 6623-6637.	3.5	10
276	Adsorption of Gemini Surfactants with Dodecyl Side Chains and Different Spacers, Including Partially Fluorinated Spacers, on Different Surfaces: Neutron Reflectometry Results. Langmuir, 2011, 27, 1844-1852.	3.5	9
277	Co-adsorption of β-casein and calcium phosphate nanoclusters (CPN) at hydrophilic and hydrophobic solid–solution interfaces studied by neutron reflectometry. Food Hydrocolloids, 2011, 25, 724-733.	10.7	9
278	Sodium Dodecyl Sulfate–Ethoxylated Polyethylenimine Adsorption at the Air–Water Interface: How the Nature of Ethoxylation Affects the Pattern of Adsorption. Langmuir, 2014, 30, 9761-9769.	3.5	9
279	Neutron reflectometry of anionic surfactants on sapphire: A strong maximum in the adsorption near the critical micelle concentration. Journal of Colloid and Interface Science, 2016, 471, 81-88.	9.4	9
280	Nature of the Intermicellar Interactions in Ethoxylated Polysorbate Surfactants with High Degrees of Ethoxylation. Langmuir, 2016, 32, 1319-1326.	3.5	9
281	Markov Chain Modeling of Surfactant Critical Micelle Concentration and Surface Composition. Langmuir, 2019, 35, 561-569.	3.5	9
282	Multivalent electrolyte induced surface ordering and solution self-assembly in anionic surfactant mixtures: Sodium dodecyl sulfate and sodium diethylene glycol monododecyl sulfate. Journal of Colloid and Interface Science, 2020, 565, 567-581.	9.4	9
283	Self-assembly in saponin/surfactant mixtures: Escin and sodium dodecylsulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127019.	4.7	9
284	Self-assembly in escin-nonionic surfactant mixtures: From micelles to vesicles. Journal of Colloid and Interface Science, 2022, 626, 305-313.	9.4	9
285	Neutron Reflection Study of Phenol Adsorbed at the Surface of Its Aqueous Solutions:Â An Unusual Adsorbed Layer. Journal of Physical Chemistry B, 1998, 102, 185-192.	2.6	8
286	A Neutron Reflectivity Study of Drainage and Stratification of AOT Foam Filmsâ€. Langmuir, 2003, 19, 7727-7733.	3.5	8
287	Structure of adsorbed layers of nitrophenoxy-tailed quaternary ammonium surfactants at the air/water interface studied by neutron reflection. Journal of Colloid and Interface Science, 2008, 325, 114-121.	9.4	8
288	The limitations of models of surfactant mixing at interfaces as revealed by neutron scattering. Physical Chemistry Chemical Physics, 2013, 15, 7017.	2.8	8

#	Article	IF	CITATIONS
289	The structure and dynamics of crystalline 2,4-hexadiyne. Molecular Physics, 1982, 45, 1015-1034.	1.7	7
290	The Effect of Temperature on the Adsorption of Nonâ€Ionic Surfactants and Nonâ€Ionic Surfactant Mixtures at the Airâ€Water Interface. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 218-223.	0.9	7
291	Unusual Adsorption at the Air–Water Interface of a Zwitterionic Carboxybetaine with a Large Charge Separation. Langmuir, 2016, 32, 3340-3347.	3.5	7
292	Surface Activity of Ethoxylate Surfactants with Different Hydrophobic Architectures: The Effect of Layer Substructure on Surface Tension and Adsorption. Langmuir, 2021, 37, 9269-9280.	3.5	7
293	Self-assembly of Quillaja saponin mixtures with different conventional synthetic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127854.	4.7	7
294	Neutron reflection and the thermodynamics of the air–water interface. Physical Chemistry Chemical Physics, 2022, 24, 8553-8577.	2.8	7
295	Observation of longitudinal acoustic phonons in layer-silicates by neutron inelastic scattering. Clay Minerals, 1982, 17, 195-200.	0.6	6
296	Neutron critical reflection from liquids and solutions. Physica B: Condensed Matter, 1989, 156-157, 525-527.	2.7	6
297	Uniaxial Stress and Sol Concentration Dependence of the Structure of a Dressed Macroion in a Dilute Electrolyte Solution. Journal of Physical Chemistry B, 1998, 102, 5823-5829.	2.6	6
298	The effects of the addition of the polyelectrolyte, poly(ethyleneimine), on the adsorption of mixed surfactants of sodium dodecylsulfate and dodecyldimethylaminoacetate at the air–water interface. Journal of Colloid and Interface Science, 2011, 356, 647-655.	9.4	6
299	How Electrolyte and Polyelectrolyte Affect the Adsorption of the Anionic Surfactant SDS onto the Surface of a Cellulose Thin Film and the Structure of the Cellulose Film. 1. Hydrophobic Cellulose. Langmuir, 2012, 28, 10773-10780.	3.5	6
300	Unusual Excess Free Energies of Mixing in Mixtures of Partially Fluorinated and Hydrocarbon Surfactants at the Air–Water Interface: Correlation with the Structure of the Layer. Langmuir, 2015, 31, 272-282.	3.5	6
301	Adsorption of hydrophobin/Ĵ²-casein mixtures at the solid-liquid interface. Journal of Colloid and Interface Science, 2016, 478, 81-87.	9.4	6
302	Impact of biogenic amine molecular weight and structure on surfactant adsorption at the air–water interface. Journal of Colloid and Interface Science, 2016, 463, 199-206.	9.4	6
303	Unusual Maximum in the Adsorption of Aqueous Surfactant Mixtures: Neutron Reflectometry of Mixtures of Zwitterionic and Ionic Surfactants at the Silica–Aqueous Interface. Langmuir, 2021, 37, 3939-3949.	3.5	6
304	Title is missing!. Acta Polymerica, 1993, 44, 184-191.	0.9	5
305	The Role of Chain Length and Structure in Surfactant Adsorption at Na-Kaolinite. Adsorption Science and Technology, 1998, 16, 565-575.	3.2	5
306	pH-Responsive Nanoaggregation of Diblock Phosphorylcholine Copolymers. Journal of Physical Chemistry B, 2008, 112, 9652-9659.	2.6	5

#	Article	IF	CITATIONS
307	Adsorption of Gemini Surfactants with Partially Fluorinated Chains at Three Different Surfaces: Neutron Reflectometry Results. Langmuir, 2011, 27, 656-664.	3.5	5
308	Structure of Surfactant Monolayers at the Air—Water Interface Determined by Neutron Reflection. ACS Symposium Series, 1996, , 342-354.	0.5	4
309	The Structure and Composition of Mixed Surfactants at Interfaces and in Micelles. ACS Symposium Series, 2003, , 96-115.	0.5	4
310	Adsorption of the Linear Poly(ethyleneimine) Precursor Poly(2-ethyl-2-oxazoline) and Sodium Dodecyl Sulfate Mixtures at the Air–Water Interface: The Impact of Modification of the Poly(ethyleneimine) Functionality. Langmuir, 2012, 28, 17331-17338.	3.5	4
311	Collapsed Structure of Hydrophobically Modified Polyacrylamide Adsorbed at the Air–Water Interface: The Polymer Surface Excess and the Gibbs Equation. Langmuir, 2020, 36, 11661-11675.	3.5	4
312	α-Sulfo alkyl ester surfactants: Impact of changing the alkyl chain length on the adsorption, mixing properties and response to electrolytes of the tetradecanoate. Journal of Colloid and Interface Science, 2021, 586, 876-890.	9.4	4
313	Multivalent counterion induced multilayer adsorption at the air-water interface in dilute Aerosol-OT solutions. Journal of Colloid and Interface Science, 2021, 597, 223-232.	9.4	4
314	Adsorption of Gelatin and Sodium Dodecyl Sulphate to Polystyrene. Imaging Science Journal, 1997, 45, 270-272.	0.5	3
315	The Hydrophobic Effect in the Adsorption Process of Alkyltrimethylammonium Bromides on to Activated Carbon. Adsorption Science and Technology, 1998, 16, 557-564.	3.2	3
316	Anionic surfactant – Biogenic amine interactions: The role of surfactant headgroup geometry. Journal of Colloid and Interface Science, 2016, 466, 213-219.	9.4	3
317	How do chain lengths of acyl-l-carnitines affect their surface adsorption and solution aggregation?. Journal of Colloid and Interface Science, 2022, 609, 491-502.	9.4	3
318	The Direct Determination of the Mean Separation of a Tethered Chain from its Anchor. Journal of Macromolecular Science - Pure and Applied Chemistry, 1992, 29, 155-162.	2.2	2
319	Neutron and X-Ray Reflectivity from Polymers at the Air Water Interface. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 179, 151-161.	0.3	1
320	The specular reflection of neutrons. Neutron News, 1991, 2, 23-27.	0.2	1
321	The Determination of the Structure and Coverage of Nonionic Surfactant Monolayers at the Air-Water Interface Using Neutron Reflection Technique. Materials Research Society Symposia Proceedings, 1994, 376, 235.	0.1	1
322	Temperature Resistant Binary SLES/Nonionic Surfactant Mixtures at the Air/Water Interface. Langmuir, 2018, 34, 9442-9452.	3.5	1
323	Structural features of interfacially adsorbed acyl-L-carnitines. Journal of Colloid and Interface Science, 2022, , .	9.4	0