
Andrew D Hamilton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2652231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rationally designed helical peptidomimetics disrupt α-synuclein fibrillation. Chemical Communications, 2022, 58, 5132-5135.	4.1	15
2	Cucurbit[7]uril Inhibits IAPP Aggregation by Targeting Nâ€ŧerminus Hot Segments and Attenuates Cytotoxicity. Chemistry - A European Journal, 2022, , .	3.3	2
3	Peptidomimetic-Based Vesicles Inhibit Amyloid-β Fibrillation and Attenuate Cytotoxicity. Journal of the American Chemical Society, 2021, 143, 3086-3093.	13.7	32
4	Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function. Nature Communications, 2021, 12, 3962.	12.8	53
5	Evolving Librarian Engagement in Undergraduate Medical Education Student Research and Scholarship. Medical Reference Services Quarterly, 2021, 40, 337-346.	1.4	1
6	The helical supramolecular assembly of oligopyridylamide foldamers in aqueous media can be guided by adenosine diphosphates. Chemical Communications, 2021, 57, 9192-9195.	4.1	9
7	Antimicrobial Peptide Mimetics Based on a Diphenylacetylene Scaffold: Synthesis, Conformational Analysis, and Activity. ChemMedChem, 2020, 15, 1932-1939.	3.2	3
8	Sub-stoichiometric inhibition of IAPP aggregation: a peptidomimetic approach to anti-amyloid agents. RSC Chemical Biology, 2020, 1, 225-232.	4.1	16
9	Designed Cell-Penetrating Peptide Inhibitors of Amyloid-beta Aggregation and Cytotoxicity. Cell Reports Physical Science, 2020, 1, 100014.	5.6	47
10	Heterofunctionalized Cavitands by Macrocyclization of Sequence-Defined Foldamers. Organic Letters, 2019, 21, 7763-7767.	4.6	10
11	αâ€Helixâ€Mimetic Foldamers for Targeting HIVâ€1 TAR RNA. Chemistry - A European Journal, 2019, 25, 7265-7:	26 9. 3	16
12	Allosteric Activation Dictates PRC2 Activity Independent of Its Recruitment to Chromatin. Molecular Cell, 2018, 70, 422-434.e6.	9.7	100
13	Peptidomimetic-Based Multidomain Targeting Offers Critical Evaluation of AÎ ² Structure and Toxic Function. Journal of the American Chemical Society, 2018, 140, 6562-6574.	13.7	49
14	Teaching an old scaffold new recognition tricks: oligopyrrolamide antagonists of IAPP aggregation. Organic and Biomolecular Chemistry, 2018, 16, 733-741.	2.8	7
15	Mimicry of a β-Hairpin Turn by a Nonpeptidic Laterally Flexible Foldamer. Organic Letters, 2018, 20, 3879-3882.	4.6	10
16	α-Helix Mimetics as Modulators of Aβ Self-Assembly. Journal of the American Chemical Society, 2017, 139, 5744-5755.	13.7	73
17	Unpicking the determinants of amide NH⋯O hydrogen bond strength with diphenylacetylene molecular balances. Organic and Biomolecular Chemistry, 2017, 15, 9156-9163.	2.8	15
18	Foldamer-Mediated Structural Rearrangement Attenuates AÎ ² Oligomerization and Cytotoxicity. Journal of the American Chemical Society, 2017, 139, 17098-17108.	13.7	61

#	Article	IF	CITATIONS
19	An α-helical peptidomimetic scaffold for dynamic combinatorial library formation. Chemical Communications, 2017, 53, 313-316.	4.1	11
20	Non-covalent Sâ <o 2016,="" 6435-6439.<="" 7,="" a="" amyloid="" chemical="" conformation="" control="" disrupts="" fibrillation.="" in="" interactions="" islet="" polypeptide="" scaffold="" science,="" td="" that=""><td>7.4</td><td>22</td></o>	7.4	22
21	Acid-mediated topological control in a functionalized foldamer. Chemical Communications, 2016, 52, 6521-6524.	4.1	13
22	Tetracyanoresorcin[4]arene selectively recognises trimethyllysine and inhibits its enzyme-catalysed demethylation. Supramolecular Chemistry, 2016, 28, 575-581.	1.2	18
23	A Modular Synthesis of Conformationally Preorganised Extended β-Strand Peptidomimetics. Chemistry - A European Journal, 2015, 21, 14657-14657.	3.3	1
24	Hybrid Diphenylalkyne–Dipeptide Oligomers Induce Multistrand βâ€6heet Formation. Chemistry - A European Journal, 2015, 21, 13518-13521.	3.3	9
25	A Modular Synthesis of Conformationally Preorganised Extended βâ€Strand Peptidomimetics. Chemistry - A European Journal, 2015, 21, 14699-14702.	3.3	13
26	Amphiphilic oligoamide α-helix peptidomimetics inhibit islet amyloid polypeptide aggregation. Tetrahedron Letters, 2015, 56, 3670-3673.	1.4	31
27	Inhibition of the HIF1α-p300 interaction by quinone- and indandione-mediated ejection of structural Zn(II). European Journal of Medicinal Chemistry, 2015, 94, 509-516.	5.5	33
28	β‣trand Mimetic Foldamers Rigidified through Dipolar Repulsion. Angewandte Chemie - International Edition, 2015, 54, 2649-2652.	13.8	34
29	Islet Amyloid-Induced Cell Death and Bilayer Integrity Loss Share a Molecular Origin Targetable with Oligopyridylamide-Based α-Helical Mimetics. Chemistry and Biology, 2015, 22, 369-378.	6.0	55
30	Ion-mediated conformational switches. Chemical Science, 2015, 6, 1630-1639.	7.4	90
31	Redox-Dependent Conformational Switching of Diphenylacetylenes. Molecules, 2014, 19, 11316-11332.	3.8	10
32	Diphenylacetyleneâ€Linked Peptide Strands Induce Bidirectional β‣heet Formation. Angewandte Chemie - International Edition, 2014, 53, 3650-3653.	13.8	40
33	A Lewis acid-mediated conformational switch. Organic and Biomolecular Chemistry, 2014, 12, 7937-7941.	2.8	10
34	Remote conformational control of a molecular switch via methylation and deprotonation. Organic and Biomolecular Chemistry, 2014, 12, 9384-9388.	2.8	12
35	α-Helix mimetics: Outwards and upwards. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 717-724.	2.2	104

36

3

Titelbild: Diphenylacetylene-Linked Peptide Strands Induce Bidirectional Î²-Sheet Formation (Angew.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
37	Design and Synthesis of Oligoamideâ€Based Double αâ€Helix Mimetics. European Journal of Organic Chemistry, 2013, 2013, 3433-3445.	2.4	15
38	Super-secondary structure peptidomimetics: design and synthesis of an α–α hairpin analogue. Supramolecular Chemistry, 2013, 25, 586-590.	1.2	5
39	pHâ€Dependent Conformational Switching in 2,6â€Benzamidodiphenylacetylenes. Angewandte Chemie - International Edition, 2011, 50, 12569-12571.	13.8	29
40	Synthetic αâ€Helix Mimetics as Agonists and Antagonists of Islet Amyloid Polypeptide Aggregation. Angewandte Chemie - International Edition, 2010, 49, 736-739.	13.8	109
41	Disrupting protein–protein interactions with non-peptidic, small molecule α-helix mimetics. Current Opinion in Chemical Biology, 2010, 14, 341-346.	6.1	181
42	Designed Molecular Switches: Controlling the Conformation of Benzamido-diphenylacetylenes. Organic Letters, 2010, 12, 3651-3653.	4.6	38
43	A Peptidomimetic Approach to Targeting Pre-amyloidogenic States in Type II Diabetes. Chemistry and Biology, 2009, 16, 943-950.	6.0	88
44	Strategies for Targeting Protein-Protein Interactions With Synthetic Agents. Angewandte Chemie - International Edition, 2005, 44, 4130-4163.	13.8	422
45	Thermodynamic Aspects of Dicarboxylate Recognition by Simple Artificial Receptors. Journal of Organic Chemistry, 2001, 66, 7313-7319.	3.2	128
46	Protein Geranylgeranylation Is Required for Osteoclast Formation, Function, and Survival: Inhibition by Bisphosphonates and GGTI-298. Journal of Bone and Mineral Research, 2000, 15, 1467-1476.	2.8	314
47	Potent, Highly Selective, and Non-Thiol Inhibitors of Protein Geranylgeranyltransferase-I. Journal of Medicinal Chemistry, 1999, 42, 1333-1340.	6.4	79
48	Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene, 1998, 16, 1467-1473.	5.9	215
49	Experimental Measurements of Low-Frequency Intermolecular Hostâ^'Guest Dynamics. Journal of Physical Chemistry B, 1998, 102, 5394-5403.	2.6	9
50	Inhibition of Ras and Related G-Proteins As a Therapeutic Strategy for Blocking Malignant Glioma Growth. Neurosurgery, 1998, 43, 124-131.	1.1	48
51	Novel Folding Patterns in a Family of Oligoanthranilamides:  Non-Peptide Oligomers That Form Extended Helical Secondary Structures. Journal of the American Chemical Society, 1997, 119, 10587-10593.	13.7	245
52	Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene, 1997, 15, 1283-1288.	5.9	223
53	Rapid and Highly Selective Cleavage of Ribonucleoside 2′,3′-Cyclic Monophosphates by Dinuclear Cull Complexes. Angewandte Chemie International Edition in English, 1997, 36, 2678-2680.	4.4	59
54	A Calixarene with Four Peptide Loops: An Antibody Mimic for Recognition of Protein Surfaces. Angewandte Chemie International Edition in English, 1997, 36, 2680-2683.	4.4	210

#	Article	lF	CITATIONS
55	Ein Calixaren mit vier Peptidschleifen: ein Antikörperâ€Mimeticum zur Erkennung von ProteinoberflÃ e hen. Angewandte Chemie, 1997, 109, 2797-2800.	2.0	32
56	Oligoanthranilamides. Non-Peptide Subunits That Show Formation of Specific Secondary Structure. Journal of the American Chemical Society, 1996, 118, 7529-7541.	13.7	267
57	Beschleunigung der Umesterung eines Phosphorsärediesters durch basensubstituierte Bis(alkylguanidinium)â€Rezeptoren. Angewandte Chemie, 1995, 107, 1343-1345.	2.0	22
58	Acceleration of a Phosphate Diester Transesterification Reaction by Bis(alkylguanidinium) Receptors Containing an Appended General Base. Angewandte Chemie International Edition in English, 1995, 34, 1237-1239.	4.4	93
59	Synthesis of artificial receptors as potential candidates for recognition and binding of pterin analogs. Journal of Heterocyclic Chemistry, 1995, 32, 675-681.	2.6	12
60	Novel Molecular Scaffolds: Formation of Helical Secondary Structure in a Family of Oligoanthranilamides. Angewandte Chemie International Edition in English, 1994, 33, 446-448.	4.4	147
61	Neue molekulare Gerüste: Bildung helicaler Sekundästrukturen bei einer Gruppe von Oligoanthranilamiden. Angewandte Chemie, 1994, 106, 465-467.	2.0	38
62	Supramolecular selfâ€assembly based on directed hydrogen bonding. Macromolecular Symposia, 1994, 77, 209-217.	0.7	6
63	Hydrogen bonding control of molecular self-assembly. Journal of Chemical Sciences, 1994, 106, 923-935.	1.5	9
64	Molecular recognition. Design of new receptors for complexation and catalysis. Supramolecular Chemistry, 1993, 1, 247-252.	1.2	15
65	Molecular Recognition of Phosphate Esters: A Balance of Hydrogen Bonding and Proton Transfer Interactions. Israel Journal of Chemistry, 1992, 32, 105-111.	2.3	22
66	Reactivity of Lithium Tetrahydridoberyllate Towards Common Functional Groups: Scope and Limitations. Synthetic Communications, 1990, 20, 247-251.	2.1	2