Andrew D Hamilton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2652231/publications.pdf

Version: 2024-02-01

66 papers 4,150 citations

147801 31 h-index 110387 64 g-index

74 all docs

74 docs citations

times ranked

74

4066 citing authors

#	Article	IF	CITATIONS
1	Strategies for Targeting Protein-Protein Interactions With Synthetic Agents. Angewandte Chemie - International Edition, 2005, 44, 4130-4163.	13.8	422
2	Protein Geranylgeranylation Is Required for Osteoclast Formation, Function, and Survival: Inhibition by Bisphosphonates and GGTI-298. Journal of Bone and Mineral Research, 2000, 15, 1467-1476.	2.8	314
3	Oligoanthranilamides. Non-Peptide Subunits That Show Formation of Specific Secondary Structure. Journal of the American Chemical Society, 1996, 118, 7529-7541.	13.7	267
4	Novel Folding Patterns in a Family of Oligoanthranilamides:  Non-Peptide Oligomers That Form Extended Helical Secondary Structures. Journal of the American Chemical Society, 1997, 119, 10587-10593.	13.7	245
5	Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase l inhibitor in human tumor cell lines. Oncogene, 1997, 15, 1283-1288.	5.9	223
6	Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene, 1998, 16, 1467-1473.	5.9	215
7	A Calixarene with Four Peptide Loops: An Antibody Mimic for Recognition of Protein Surfaces. Angewandte Chemie International Edition in English, 1997, 36, 2680-2683.	4.4	210
8	Disrupting protein–protein interactions with non-peptidic, small molecule α-helix mimetics. Current Opinion in Chemical Biology, 2010, 14, 341-346.	6.1	181
9	Novel Molecular Scaffolds: Formation of Helical Secondary Structure in a Family of Oligoanthranilamides. Angewandte Chemie International Edition in English, 1994, 33, 446-448.	4.4	147
10	Thermodynamic Aspects of Dicarboxylate Recognition by Simple Artificial Receptors. Journal of Organic Chemistry, 2001, 66, 7313-7319.	3.2	128
11	Synthetic αâ€Helix Mimetics as Agonists and Antagonists of Islet Amyloid Polypeptide Aggregation. Angewandte Chemie - International Edition, 2010, 49, 736-739.	13.8	109
12	α-Helix mimetics: Outwards and upwards. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 717-724.	2.2	104
13	Allosteric Activation Dictates PRC2 Activity Independent of Its Recruitment to Chromatin. Molecular Cell, 2018, 70, 422-434.e6.	9.7	100
14	Acceleration of a Phosphate Diester Transesterification Reaction by Bis(alkylguanidinium) Receptors Containing an Appended General Base. Angewandte Chemie International Edition in English, 1995, 34, 1237-1239.	4.4	93
15	Ion-mediated conformational switches. Chemical Science, 2015, 6, 1630-1639.	7.4	90
16	A Peptidomimetic Approach to Targeting Pre-amyloidogenic States in Type II Diabetes. Chemistry and Biology, 2009, 16, 943-950.	6.0	88
17	Potent, Highly Selective, and Non-Thiol Inhibitors of Protein Geranylgeranyltransferase-I. Journal of Medicinal Chemistry, 1999, 42, 1333-1340.	6.4	79
18	\hat{l}_{\pm} -Helix Mimetics as Modulators of A \hat{l}^2 Self-Assembly. Journal of the American Chemical Society, 2017, 139, 5744-5755.	13.7	73

#	Article	IF	CITATIONS
19	Foldamer-Mediated Structural Rearrangement Attenuates A \hat{I}^2 Oligomerization and Cytotoxicity. Journal of the American Chemical Society, 2017, 139, 17098-17108.	13.7	61
20	Rapid and Highly Selective Cleavage of Ribonucleoside 2′,3′-Cyclic Monophosphates by Dinuclear Cull Complexes. Angewandte Chemie International Edition in English, 1997, 36, 2678-2680.	4.4	59
21	Islet Amyloid-Induced Cell Death and Bilayer Integrity Loss Share a Molecular Origin Targetable with Oligopyridylamide-Based α-Helical Mimetics. Chemistry and Biology, 2015, 22, 369-378.	6.0	55
22	Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function. Nature Communications, 2021, 12, 3962.	12.8	53
23	Peptidomimetic-Based Multidomain Targeting Offers Critical Evaluation of $\hat{Al^2}$ Structure and Toxic Function. Journal of the American Chemical Society, 2018, 140, 6562-6574.	13.7	49
24	Inhibition of Ras and Related G-Proteins As a Therapeutic Strategy for Blocking Malignant Glioma Growth. Neurosurgery, 1998, 43, 124-131.	1.1	48
25	Designed Cell-Penetrating Peptide Inhibitors of Amyloid-beta Aggregation and Cytotoxicity. Cell Reports Physical Science, 2020, 1, 100014.	5.6	47
26	Diphenylacetyleneâ€Linked Peptide Strands Induce Bidirectional βâ€Sheet Formation. Angewandte Chemie - International Edition, 2014, 53, 3650-3653.	13.8	40
27	Neue molekulare Ger $ ilde{A}^{1}\!\!/\!\!4$ ste: Bildung helicaler Sekund $ ilde{A}^{\!\!R}$ trukturen bei einer Gruppe von Oligoanthranilamiden. Angewandte Chemie, 1994, 106, 465-467.	2.0	38
28	Designed Molecular Switches: Controlling the Conformation of Benzamido-diphenylacetylenes. Organic Letters, 2010, 12, 3651-3653.	4.6	38
29	βâ€Strand Mimetic Foldamers Rigidified through Dipolar Repulsion. Angewandte Chemie - International Edition, 2015, 54, 2649-2652.	13.8	34
30	Inhibition of the HIF1 \hat{i} ±-p300 interaction by quinone- and indandione-mediated ejection of structural Zn(II). European Journal of Medicinal Chemistry, 2015, 94, 509-516.	5. 5	33
31	Ein Calixaren mit vier Peptidschleifen: ein Antikörperâ€Mimeticum zur Erkennung von Proteinoberflähen. Angewandte Chemie, 1997, 109, 2797-2800.	2.0	32
32	Peptidomimetic-Based Vesicles Inhibit Amyloid- \hat{l}^2 Fibrillation and Attenuate Cytotoxicity. Journal of the American Chemical Society, 2021, 143, 3086-3093.	13.7	32
33	Amphiphilic oligoamide \hat{l} ±-helix peptidomimetics inhibit islet amyloid polypeptide aggregation. Tetrahedron Letters, 2015, 56, 3670-3673.	1.4	31
34	pHâ€Dependent Conformational Switching in 2,6â€Benzamidodiphenylacetylenes. Angewandte Chemie - International Edition, 2011, 50, 12569-12571.	13.8	29
35	Molecular Recognition of Phosphate Esters: A Balance of Hydrogen Bonding and Proton Transfer Interactions. Israel Journal of Chemistry, 1992, 32, 105-111.	2.3	22
36	Beschleunigung der Umesterung eines PhosphorsÃ ¤ rediesters durch basensubstituierte Bis(alkylguanidinium)â€Rezeptoren. Angewandte Chemie, 1995, 107, 1343-1345.	2.0	22

#	Article	IF	Citations
37	Non-covalent Sâc O interactions control conformation in a scaffold that disrupts islet amyloid polypeptide fibrillation. Chemical Science, 2016, 7, 6435-6439.	7.4	22
38	Tetracyanoresorcin[4]arene selectively recognises trimethyllysine and inhibits its enzyme-catalysed demethylation. Supramolecular Chemistry, 2016, 28, 575-581.	1.2	18
39	αâ€Helixâ€Mimetic Foldamers for Targeting HIVâ€1 TAR RNA. Chemistry - A European Journal, 2019, 25, 7265-72	26 9 _3	16
40	Sub-stoichiometric inhibition of IAPP aggregation: a peptidomimetic approach to anti-amyloid agents. RSC Chemical Biology, 2020, 1, 225-232.	4.1	16
41	Molecular recognition. Design of new receptors for complexation and catalysis. Supramolecular Chemistry, 1993, 1, 247-252.	1.2	15
42	Design and Synthesis of Oligoamideâ€Based Double αâ€Helix Mimetics. European Journal of Organic Chemistry, 2013, 2013, 3433-3445.	2.4	15
43	Unpicking the determinants of amide NHâx¯O hydrogen bond strength with diphenylacetylene molecular balances. Organic and Biomolecular Chemistry, 2017, 15, 9156-9163.	2.8	15
44	Rationally designed helical peptidomimetics disrupt \hat{l}_{\pm} -synuclein fibrillation. Chemical Communications, 2022, 58, 5132-5135.	4.1	15
45	A Modular Synthesis of Conformationally Preorganised Extended βâ€Strand Peptidomimetics. Chemistry - A European Journal, 2015, 21, 14699-14702.	3.3	13
46	Acid-mediated topological control in a functionalized foldamer. Chemical Communications, 2016, 52, 6521-6524.	4.1	13
47	Synthesis of artificial receptors as potential candidates for recognition and binding of pterin analogs. Journal of Heterocyclic Chemistry, 1995, 32, 675-681.	2.6	12
48	Remote conformational control of a molecular switch via methylation and deprotonation. Organic and Biomolecular Chemistry, 2014, 12, 9384-9388.	2.8	12
49	An α-helical peptidomimetic scaffold for dynamic combinatorial library formation. Chemical Communications, 2017, 53, 313-316.	4.1	11
50	Redox-Dependent Conformational Switching of Diphenylacetylenes. Molecules, 2014, 19, 11316-11332.	3.8	10
51	A Lewis acid-mediated conformational switch. Organic and Biomolecular Chemistry, 2014, 12, 7937-7941.	2.8	10
52	Mimicry of a \hat{I}^2 -Hairpin Turn by a Nonpeptidic Laterally Flexible Foldamer. Organic Letters, 2018, 20, 3879-3882.	4.6	10
53	Heterofunctionalized Cavitands by Macrocyclization of Sequence-Defined Foldamers. Organic Letters, 2019, 21, 7763-7767.	4.6	10
54	Experimental Measurements of Low-Frequency Intermolecular Hostâ^Guest Dynamics. Journal of Physical Chemistry B, 1998, 102, 5394-5403.	2.6	9

#	Article	IF	CITATIONS
55	Hybrid Diphenylalkyne–Dipeptide Oligomers Induce Multistrand βâ€ 5 heet Formation. Chemistry - A European Journal, 2015, 21, 13518-13521.	3.3	9
56	The helical supramolecular assembly of oligopyridylamide foldamers in aqueous media can be guided by adenosine diphosphates. Chemical Communications, 2021, 57, 9192-9195.	4.1	9
57	Hydrogen bonding control of molecular self-assembly. Journal of Chemical Sciences, 1994, 106, 923-935.	1.5	9
58	Teaching an old scaffold new recognition tricks: oligopyrrolamide antagonists of IAPP aggregation. Organic and Biomolecular Chemistry, 2018, 16, 733-741.	2.8	7
59	Supramolecular selfâ€assembly based on directed hydrogen bonding. Macromolecular Symposia, 1994, 77, 209-217.	0.7	6
60	Super-secondary structure peptidomimetics: design and synthesis of an α–α hairpin analogue. Supramolecular Chemistry, 2013, 25, 586-590.	1.2	5
61	Antimicrobial Peptide Mimetics Based on a Diphenylacetylene Scaffold: Synthesis, Conformational Analysis, and Activity. ChemMedChem, 2020, 15, 1932-1939.	3.2	3
62	Reactivity of Lithium Tetrahydridoberyllate Towards Common Functional Groups: Scope and Limitations. Synthetic Communications, 1990, 20, 247-251.	2.1	2
63	Cucurbit[7]uril Inhibits IAPP Aggregation by Targeting Nâ€terminus Hot Segments and Attenuates Cytotoxicity. Chemistry - A European Journal, 2022, , .	3.3	2
64	A Modular Synthesis of Conformationally Preorganised Extended \hat{I}^2 -Strand Peptidomimetics. Chemistry - A European Journal, 2015, 21, 14657-14657.	3.3	1
65	Evolving Librarian Engagement in Undergraduate Medical Education Student Research and Scholarship. Medical Reference Services Quarterly, 2021, 40, 337-346.	1.4	1

Titelbild: Diphenylacetylene-Linked Peptide Strands Induce Bidirectional β-Sheet Formation (Angew.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf