Leo Swadling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2651994/publications.pdf

Version: 2024-02-01

201674 243625 3,753 53 27 44 citations h-index g-index papers 61 61 61 6508 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel Adenovirus-Based Vaccines Induce Broad and Sustained T Cell Responses to HCV in Man. Science Translational Medicine, 2012, 4, 115ra1.	12.4	356
2	A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. Science Translational Medicine, 2014, 6, 261ra153.	12.4	297
3	Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science, 2021, 372, 1418-1423.	12.6	286
4	Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature, 2022, 601, 110-117.	27.8	280
5	CD161 Defines a Transcriptional and Functional Phenotype across Distinct Human T Cell Lineages. Cell Reports, 2014, 9, 1075-1088.	6.4	264
6	IL-2high tissue-resident T cells in the human liver: Sentinels for hepatotropic infection. Journal of Experimental Medicine, 2017, 214, 1567-1580.	8.5	259
7	Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science, 2022, 377, .	12.6	241
8	Circulating and intrahepatic antiviral B cells are defective in hepatitis B. Journal of Clinical Investigation, 2018, 128, 4588-4603.	8.2	208
9	Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection. Science Immunology, 2020, 5, .	11.9	172
10	CD161intCD8+ T cells: a novel population of highly functional, memory CD8+ T cells enriched within the gut. Mucosal Immunology, 2016, 9, 401-413.	6.0	121
11	IL-15 Overcomes Hepatocellular Carcinoma-Induced NK Cell Dysfunction. Frontiers in Immunology, 2018, 9, 1009.	4.8	88
12	Induction and Maintenance of CX3CR1-Intermediate Peripheral Memory CD8+ T Cells by Persistent Viruses and Vaccines. Cell Reports, 2018, 23, 768-782.	6.4	79
13	Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state. Nucleic Acids Research, 2017, 45, e148-e148.	14.5	77
14	Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes. Journal of Experimental Medicine, 2020, 217, .	8.5	72
15	T cells in COVID-19 — united in diversity. Nature Immunology, 2020, 21, 1307-1308.	14.5	59
16	Adenoviral Vector Vaccination Induces a Conserved Program of CD8+ T Cell Memory Differentiation in Mouse and Man. Cell Reports, 2015, 13, 1578-1588.	6.4	56
17	Autophagy in T cells from aged donors is maintained by spermidine and correlates with function and vaccine responses. ELife, 2020, 9, .	6.0	55
18	Targeting human Acyl-CoA:cholesterol acyltransferase as a dual viral and TÂcell metabolic checkpoint. Nature Communications, 2021, 12, 2814.	12.8	54

#	Article	IF	CITATIONS
19	Ever closer to a prophylactic vaccine for HCV. Expert Opinion on Biological Therapy, 2013, 13, 1109-1124.	3.1	53
20	Human Liver Memory CD8+ T Cells Use Autophagy for Tissue Residence. Cell Reports, 2020, 30, 687-698.e6.	6.4	53
21	Blood transcriptional biomarkers of acute viral infection for detection of pre-symptomatic SARS-CoV-2 infection: a nested, case-control diagnostic accuracy study. Lancet Microbe, The, 2021, 2, e508-e517.	7.3	52
22	Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma. Nature Communications, 2022, 13, 1372.	12.8	44
23	Chronic hepatitis C viral infection subverts vaccineâ€induced Tâ€cell immunity in humans. Hepatology, 2016, 63, 1455-1470.	7.3	43
24	Characterization of the Specificity, Functionality, and Durability of Host Tâ€Cell Responses Against the Fullâ€Length Hepatitis E Virus. Hepatology, 2016, 64, 1934-1950.	7.3	42
25	Immune phenotype and function of natural killer and T cells in chronic hepatitis C patients who received a single dose of antiâ€MicroRNAâ€122, RGâ€101. Hepatology, 2017, 66, 57-68.	7.3	39
26	Rapid synchronous type 1 IFN and virus-specific TÂcell responses characterize first wave non-severe SARS-CoV-2 infections. Cell Reports Medicine, 2022, 3, 100557.	6.5	36
27	Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection. Vaccines, 2016, 4, 27.	4.4	35
28	Crossâ€reactivity of hepatitis C virus specific vaccineâ€induced T cells at immunodominant epitopes. European Journal of Immunology, 2015, 45, 309-316.	2.9	34
29	The Multiple Roles of Hepatitis B Virus X Protein (HBx) Dysregulated MicroRNA in Hepatitis B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) and Immune Pathways. Viruses, 2020, 12, 746.	3.3	30
30	The liver as an immunological barrier redefined by singleâ€cell analysis. Immunology, 2020, 160, 157-170.	4.4	28
31	A Novel Vaccine Strategy Employing Serologically Different Chimpanzee Adenoviral Vectors for the Prevention of HIV-1 and HCV Coinfection. Frontiers in Immunology, 2018, 9, 3175.	4.8	27
32	The past, current and future epidemiological dynamic of SARS-CoV-2. Oxford Open Immunology, 2022, 3,	2.8	24
33	Association Between Impaired $\hat{Vl}\pm7.2+CD161++CD8+$ (MAIT) and $\hat{Vl}\pm7.2+CD161-CD8+$ T-Cell Populations and Gut Dysbiosis in Chronically HIV- and/or HCV-Infected Patients. Frontiers in Microbiology, 2019, 10, 1972.	3.5	20
34	MHC class II invariant chain–adjuvanted viral vectored vaccines enhances T cell responses in humans. Science Translational Medicine, 2020, 12, .	12.4	20
35	HLAâ€DR polymorphism in SARSâ€CoVâ€2 infection and susceptibility to symptomatic COVIDâ€19. Immunology, 2022, 166, 68-77.	4.4	18
36	Optimising T cell (re)boosting strategies for adenoviral and modified vaccinia Ankara vaccine regimens in humans. Npj Vaccines, 2020, 5, 94.	6.0	15

#	Article	IF	CITATIONS
37	Characterizing Hepatitis C Virus–Specific CD4+ T Cells Following Viralâ€Vectored Vaccination, Directly Acting Antivirals, and Spontaneous Viral Cure. Hepatology, 2020, 72, 1541-1555.	7.3	15
38	Immune responses in DAA treated chronic hepatitis C patients with and without prior RG-101 dosing. Antiviral Research, 2017, 146, 139-145.	4.1	14
39	Successful directâ€acting antiviral therapy in HIV/HCV coâ€infected patients fails to restore circulating mucosalâ€associated invariant T cells. European Journal of Immunology, 2019, 49, 1127-1129.	2.9	13
40	Viral vectored hepatitis C virus vaccines generate pan-genotypic T cell responses to conserved subdominant epitopes. Vaccine, 2020, 38, 5036-5048.	3.8	13
41	Liver-resident CD8+ T cells: Learning lessons from the local experts. Journal of Hepatology, 2020, 72, 1049-1051.	3.7	4
42	65 A THERAPEUTIC VACCINE FOR HCV BASED ON NOVEL, RARE, ADENOVIRAL VECTORS. Journal of Hepatology, 2011, 54, S29.	3.7	2
43	1183 IN VIVO ANTIGENIC TARGETS OF T CELLS INDUCED BY ADENOVIRAL VECTORED VACCINES IN PATIENTS WITH CHRONIC HCV INFECTION. Journal of Hepatology, 2012, 56, S468.	3.7	2
44	Isolation of human intrahepatic leukocytes for phenotypic and functional characterization by flow cytometry. STAR Protocols, 2022, 3, 101356.	1.2	2
45	276 MULTIPLE NOVEL PEPTIDE EPITOPES IN HCV GENOTYPE-3A IDENTIFIED USING TWO PARALLEL APPROACHES. Journal of Hepatology, 2011, 54, S113.	3.7	0
46	Characterisation of the Specificity, Functionality and Durability of Host T-Cell Responses against the Full HEV Genome. Journal of Hepatology, 2016, 64, S150.	3.7	0
47	Vaccine-Induced HCV-Specific CD8+ T Cell Response Restricted by the Protective HLA Allele B*27: Broad Cross-Recognition of Evolving Viral Variants. Journal of Hepatology, 2016, 64, S516-S517.	3.7	0
48	IGG4-Related Disease is Associatied with CD4+ T Cell Activation and Regulation. Journal of Hepatology, 2016, 64, S648-S649.	3.7	0
49	HCV T Cell Re-Vaccination Strategies using Simian Adeno and MVA Viral Vectors to Enhance and Maintain Anti-Viral Immunity. Journal of Hepatology, 2016, 64, S148.	3.7	0
50	No change in hepatitis C virus-specific T cell functionality after successful DAA treatment in chronic hepatitis C patients. Journal of Hepatology, 2017, 66, S331.	3.7	0
51	Transcriptomic analysis reveals novel insights into the effect of therapeutic venesection in HFE haemochromatosis. Journal of Hepatology, 2017, 66, S176.	3.7	0
52	Highly immunogenic virally vectored T cell vaccine against HCV are able to induce specific CD4+ T cell helper responses. Journal of Hepatology, 2018, 68, S790-S791.	3.7	0
53	Induction and maintenance of CX3CR1-intermediate peripheral memory CD8 T cells by persistent viruses and novel vaccines. SSRN Electronic Journal, 0, , .	0.4	0