Matthias C Truttmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2651566/publications.pdf

Version: 2024-02-01

23 papers

1,987 citations

471509 17 h-index 642732 23 g-index

26 all docs

26 docs citations

times ranked

26

3832 citing authors

#	Article	IF	Citations
1	Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nature Biotechnology, 2015, 33, 538-542.	17.5	945
2	Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nature Biotechnology, 2019, 37, 73-83.	17.5	262
3	Recent advances in sortase-catalyzed ligation methodology. Current Opinion in Structural Biology, 2016, 38, 111-118.	5.7	127
4	Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code. Journal of Biological Chemistry, 2020, 295, 10689-10708.	3.4	103
5	A translocated protein of <i>Bartonella henselae </i> interferes with endocytic uptake of individual bacteria and triggers uptake of large bacterial aggregates via the invasome. Cellular Microbiology, 2009, 11, 927-945.	2.1	53
6	Combined action of the type IV secretion effector proteins BepC and BepF promotes invasome formation of Bartonella henselae on endothelial and epithelial cells. Cellular Microbiology, 2011, 13, 284-299.	2.1	48
7	Hepta-Mutant <i>Staphylococcus aureus</i> Sortase A (SrtA _{7m}) as a Tool for <i>in Vivo</i> Protein Labeling in <i>Caenorhabditis elegans</i> ACS Chemical Biology, 2017, 12, 664-673.	3.4	47
8	The Caenorhabditis elegans Protein FIC-1 Is an AMPylase That Covalently Modifies Heat-Shock 70 Family Proteins, Translation Elongation Factors and Histones. PLoS Genetics, 2016, 12, e1006023.	3.5	45
9	<i>Bartonella henselae</i> trimeric autotransporter adhesin BadA expression interferes with effector translocation by the VirB/D4 type IV secretion system. Cellular Microbiology, 2013, 15, 759-778.	2.1	43
10	Siteâ€Specific Protein Labeling via Sortaseâ€Mediated Transpeptidation. Current Protocols in Protein Science, 2017, 89, 15.3.1-15.3.19.	2.8	40
11	HypE-specific Nanobodies as Tools to Modulate HypE-mediated Target AMPylation. Journal of Biological Chemistry, 2015, 290, 9087-9100.	3.4	39
12	Simultaneous analysis of large-scale RNAi screens for pathogen entry. BMC Genomics, 2014, 15, 1162.	2.8	38
13	Unrestrained AMPylation targets cytosolic chaperones and activates the heat shock response. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E152-E160.	7.1	37
14	Chaperone AMPylation modulates aggregation and toxicity of neurodegenerative disease-associated polypeptides. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5008-E5017.	7.1	31
15	Caenorhabditis elegans as a model system for studying aging-associated neurodegenerative diseases. Translational Medicine of Aging, 2020, 4, 60-72.	1.3	27
16	<i>Bartonella henselae</i> engages inside-out and outside-in signaling by integrin $\hat{1}^2$ 1 and talin1 during invasome-mediated bacterial uptake. Journal of Cell Science, 2011, 124, 3591-3602.	2.0	22
17	rAMPing Up Stress Signaling: Protein AMPylation in Metazoans. Trends in Cell Biology, 2017, 27, 608-620.	7.9	19
18	BID-F1 and BID-F2 Domains of Bartonella henselae Effector Protein BepF Trigger Together with BepC the Formation of Invasome Structures. PLoS ONE, 2011, 6, e25106.	2.5	19

#	Article	IF	CITATIONS
19	Deletion of mFICD AMPylase alters cytokine secretion and affects visual short-term learning inÂvivo. Journal of Biological Chemistry, 2021, 297, 100991.	3.4	10
20	Fic and non-Fic AMPylases: protein AMPylation in metazoans. Open Biology, 2021, 11, 210009.	3.6	5
21	Explaining inter-lab variance in C. elegans N2 lifespan: Making a case for standardized reporting to enhance reproducibility. Experimental Gerontology, 2021, 156, 111622.	2.8	5
22	In vitro AMPylation Assays Using Purified, Recombinant Proteins. Bio-protocol, 2017, 7, .	0.4	2
23	Over-expression of the constitutive AMPylase FIC-1(E274G) does not deplete cellular ATP pools in. MicroPublication Biology, 2021, 2021, .	0.1	0