Sesha Vempati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2651559/publications.pdf Version: 2024-02-01

SESHA VEMDATI

#	Article	IF	CITATIONS
1	Ultrafast generation and decay of a surface metal. Nature Communications, 2021, 12, 978.	12.8	9
2	Electrical Conductivity for Quasiparticle Graphene-Like System. Springer Proceedings in Physics, 2021, , 187-193.	0.2	0
3	Electrospinning Combined with Atomic Layer Deposition to Generate Applied Nanomaterials: A Review. ACS Applied Nano Materials, 2020, 3, 6186-6209.	5.0	23
4	Distinguishing strain, charge and molecular orbital induced effects on the electronic structure: graphene/ammonia system. Journal of Physics Condensed Matter, 2020, 32, 455501.	1.8	1
5	Photoexcited organic molecules en route to highly efficient autoionization. Journal of Chemical Physics, 2020, 152, 074715.	3.0	3
6	Graphene oxide-doped PEDOT:PSS as hole transport layer in inverted bulk heterojunction solar cell. Journal of Materials Science: Materials in Electronics, 2020, 31, 3576-3584.	2.2	11
7	Revealing the competing contributions of charge carriers, excitons, and defects to the non-equilibrium optical properties of ZnO. Structural Dynamics, 2019, 6, 034501.	2.3	26
8	Negative photoresponse in ZnO–PEDOT:PSS nanocomposites and photogating effects. Nanoscale Advances, 2019, 1, 2435-2443.	4.6	12
9	Solvothermal synthesis of graphene oxide and its composites with poly(ε-caprolactone). Nanoscale, 2019, 11, 18672-18682.	5.6	11
10	Uncovering the (un-)occupied electronic structure of a buried hybrid interface. Journal of Physics Condensed Matter, 2019, 31, 094001.	1.8	5
11	Associative behaviour and effect of functional groups on the fluorescence of graphene oxide. Physical Chemistry Chemical Physics, 2018, 20, 7559-7569.	2.8	11
12	Temporary and permanent changes to the defect equilibrium due to ultraviolet exposure: Surface and bulk effects on ZnO nanostructures. Applied Surface Science, 2018, 457, 676-683.	6.1	5
13	Tuning the degree of oxidation and electron delocalization of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) with solid-electrolyte. Applied Surface Science, 2017, 419, 770-777.	6.1	9
14	Optoelectronic Properties of Layered Titanate Nanostructure and Polyaniline Impregnated Devices. ChemistrySelect, 2016, 1, 5885-5891.	1.5	5
15	Controlling the photoconductivity: Graphene oxide and polyaniline self assembled intercalation. Applied Physics Letters, 2015, 106, 051106.	3.3	5
16	Electrical conduction and rheological behaviour of composites ofÂpoly(ε-caprolactone) and MWCNTs. Polymer, 2015, 58, 209-221.	3.8	62
17	Excitation dependent recombination studies on SnO2/TiO2 electrospun nanofibers. RSC Advances, 2015, 5, 66367-66375.	3.6	8
18	Transformation of polymer-ZnO core–shell nanofibers into ZnO hollow nanofibers: Intrinsic defect reorganization in ZnO and its influence on the photocatalysis. Applied Catalysis B: Environmental, 2015, 176-177, 646-653.	20.2	56

SESHA VEMPATI

#	Article	IF	CITATIONS
19	Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. Journal of Applied Physics, 2015, 118, .	2.5	25
20	Amorphous to Tetragonal Zirconia Nanostructures and Evolution of Valence and Core Regions. Journal of Physical Chemistry C, 2015, 119, 23268-23273.	3.1	19
21	Fabrication of flexible polymer–GaN core–shell nanofibers by the combination of electrospinning and hollow cathode plasma-assisted atomic layer deposition. Journal of Materials Chemistry C, 2015, 3, 5199-5206.	5.5	26
22	Defect related emission versus intersystem crossing: blue emitting ZnO/graphene oxide quantum dots. Nanoscale, 2015, 7, 16110-16118.	5.6	29
23	Surface ionic states and structure of titanate nanotubes. RSC Advances, 2015, 5, 82977-82982.	3.6	8
24	Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Physical Chemistry Chemical Physics, 2015, 17, 2960-2986.	2.8	151
25	Water-soluble non-polymeric electrospun cyclodextrin nanofiber template for the synthesis of metal oxide tubes by atomic layer deposition. RSC Advances, 2014, 4, 61698-61705.	3.6	45
26	ZnO Nanostructures on Electrospun Nanofibers by Atomic Layer Deposition/Hydrothermal Growth and Their Photocatalytic Activity. Materials Research Society Symposia Proceedings, 2014, 1675, 9-14.	0.1	1
27	Selective isolation of the electron or hole in photocatalysis: ZnO–TiO2 and TiO2–ZnO core–shell structured heterojunction nanofibers via electrospinning and atomic layer deposition. Nanoscale, 2014, 6, 5735.	5.6	139
28	Effective nanostructred morphologies for efficient hybrid solar cells. Solar Energy, 2014, 106, 1-22.	6.1	45
29	Electron–phonon interaction in bulk layered graphene and its oxide in the presence of alcohols in a device: equilibrium molecular doping. Journal of Materials Chemistry C, 2014, 2, 8585-8592.	5.5	5
30	Fluorescence from graphene oxide and the influence of ionic, ï€â€"ï€ interactions and heterointerfaces: electron or energy transfer dynamics. Physical Chemistry Chemical Physics, 2014, 16, 21183-21203.	2.8	38
31	Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale, 2014, 6, 10224-10234.	5.6	320
32	Reduced recombination and enhanced UV-assisted photocatalysis by highly anisotropic titanates from electrospun TiO2–SiO2 nanostructures. RSC Advances, 2014, 4, 27979.	3.6	18
33	Enhanced photocatalytic activity of homoassembled ZnO nanostructures on electrospun polymeric nanofibers: A combination of atomic layer deposition and hydrothermal growth. Applied Catalysis B: Environmental, 2014, 156-157, 173-183.	20.2	89
34	Sensitive Surface States and their Passivation Mechanism in CdS Quantum Dots. Journal of Physical Chemistry C, 2013, 117, 21609-21618.	3.1	43
35	Conducting Polyaniline-Electrical Charge Transportation. Materials Sciences and Applications, 2013, 04, 1-10.	0.4	33
36	Unusual photoresponse of indium doped ZnO/organic thin film heterojunction. Applied Physics Letters, 2012, 100, .	3.3	62

SESHA VEMPATI

#	Article	IF	CITATIONS
37	Solution-based synthesis of cobalt-doped ZnO thin films. Thin Solid Films, 2012, 524, 137-143.	1.8	45
38	Cobalt-doped ZnO nanowires on quartz: Synthesis by simple chemical method and characterization. Journal of Crystal Growth, 2012, 343, 7-12.	1.5	30
39	One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Research Letters, 2012, 7, 470.	5.7	317
40	Flexible polymer microtubes and microchannels via electrospinning. Materials Letters, 2011, 65, 3493-3495.	2.6	7
41	Non-universal behavior well above the percolation threshold and thermal properties of core-shell-magnetite-polymer fibers. Journal of Applied Physics, 2011, 110, 113718.	2.5	3
42	Ultrashort and metastable doping of the ZnO surface by photoexcited defects. Faraday Discussions, 0, 237, 58-79.	3.2	4