Hiroshi Y Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2651448/publications.pdf

Version: 2024-02-01

623734 752698 21 750 14 20 citations g-index h-index papers 21 21 21 1365 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic instability genes in lung and colon adenocarcinoma indicate organ specificity of transcriptomic impact on Copy Number Alterations. Scientific Reports, 2022, 12, .	3.3	1
2	How would preclinical Alzheimer's disease (AD pathology) occur? An insight from a genomic instability mouse model. Neural Regeneration Research, 2021, 16, 2012.	3.0	2
3	GSK3â€ARC/Arg3.1 and GSK3â€Wnt signaling axes trigger amyloidâ€Î² accumulation and neuroinflammation in middleâ€aged Shugoshin 1 mice. Aging Cell, 2020, 19, e13221.	6.7	15
4	"Amyloidâ€beta accumulation cycle―as a prevention and/or therapy target for Alzheimer's disease. Aging Cell, 2020, 19, e13109.	6.7	37
5	Critical role of mitosis in spontaneous late-onset Alzheimer's disease; from a Shugoshin 1 cohesinopathy mouse model. Cell Cycle, 2018, 17, 2321-2334.	2.6	7
6	Spontaneous development of Alzheimer's diseaseâ€associated brain pathology in a Shugoshinâ€1 mouse cohesinopathy model. Aging Cell, 2018, 17, e12797.	6.7	19
7	Frequently mutated genes/pathways and genomic instability as prevention targets in liver cancer. Carcinogenesis, 2017, 38, 2-11.	2.8	135
8	Emerging links among Chromosome Instability (CIN), cancer, and aging. Molecular Carcinogenesis, 2017, 56, 791-803.	2.7	22
9	Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage <i>in vivo</i> . Oncotarget, 2017, 8, 57605-57621.	1.8	55
10	Antagonizing pathways leading to differential dynamics in colon carcinogenesis in Shugoshin1 (Sgo1)-haploinsufficient chromosome instability model. Molecular Carcinogenesis, 2016, 55, 600-610.	2.7	8
11	Systemic Chromosome Instability Resulted in Colonic Transcriptomic Changes in Metabolic, Proliferation, and Stem Cell Regulators in <i>Sgo1â²¹/+</i> Mice. Cancer Research, 2016, 76, 630-642.	0.9	17
12	Tumor-promoting/progressing role of additional chromosome instability in hepatic carcinogenesis in Sgo1 (Shugoshin 1) haploinsufficient mice. Carcinogenesis, 2015, 36, 429-440.	2.8	20
13	Targeting pancreatitis blocks tumor-initiating stem cells and pancreatic cancer progression. Oncotarget, 2015, 6, 15524-15539.	1.8	38
14	Genomic Instability and Colon Carcinogenesis: From the Perspective of Genes. Frontiers in Oncology, 2013, 3, 130.	2.8	57
15	Haploinsufficiency of <i> SGO1 < /i > results in deregulated centrosome dynamics, enhanced chromosomal instability and colon tumorigenesis. Cell Cycle, 2012, 11, 479-488.</i>	2.6	61
16	Mitosis-Targeting Natural Products for Cancer Prevention and Therapy. Current Drug Targets, 2012, 13, 1820-1830.	2.1	33
17	BRD8 is a potential chemosensitizing target for spindle poisons in colorectal cancer therapy. International Journal of Oncology, 2009, 35, 1101-9.	3.3	30
18	Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis, 2009, 30, 1469-1474.	2.8	95

#	Article	IF	CITATIONS
19	Cell-based expression cloning for identification of polypeptides that hypersensitize mammalian cells to mitotic arrest. Biological Procedures Online, 2006, 8, 36-43.	2.9	2
20	Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Molecular Cancer Therapeutics, 2006, 5, 2963-2969.	4.1	85
21	Inhibition of TRIP1/S8/hSug1, a component of the human 19S proteasome, enhances mitotic apoptosis induced by spindle poisons. Molecular Cancer Therapeutics, 2006, 5, 29-38.	4.1	11