Stéphane Le Crom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2650602/publications.pdf

Version: 2024-02-01

47 papers

4,791 citations

186265 28 h-index 214800 47 g-index

53 all docs 53 docs citations

53 times ranked 7582 citing authors

#	Article	IF	CITATIONS
1	Local Translation in Perisynaptic Astrocytic Processes Is Specific and Changes after Fear Conditioning. Cell Reports, 2020, 32, 108076.	6.4	53
2	Analysis of the genomic basis of functional diversity in dinoflagellates using a transcriptomeâ€based sequence similarity network. Molecular Ecology, 2018, 27, 2365-2380.	3.9	12
3	Comparative Transcriptomics Highlights New Features of the Iron Starvation Response in the Human Pathogen Candida glabrata. Frontiers in Microbiology, 2018, 9, 2689.	3 . 5	7
4	Connexin 43 Controls the Astrocyte Immunoregulatory Phenotype. Brain Sciences, 2018, 8, 50.	2.3	16
5	Cyclin G and the Polycomb Repressive complexes PRC1 and PR-DUB cooperate for developmental stability. PLoS Genetics, 2018, 14, e1007498.	3 . 5	7
6	Isolation and differential transcriptome of vascular smooth muscle cells and mid-capillary pericytes from the rat brain. Scientific Reports, 2018, 8, 12272.	3.3	55
7	Increased Fatty Acid Oxidation in Differentiated Proximal Tubular Cells Surviving a Reversible Episode of Acute Kidney Injury. Cellular Physiology and Biochemistry, 2018, 47, 1338-1351.	1.6	19
8	Meet-U: Educating through research immersion. PLoS Computational Biology, 2018, 14, e1005992.	3.2	4
9	Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface. Cell Discovery, 2017, 3, 17005.	6.7	130
10	Genome sequencing and transcriptome analysis of Trichoderma reesei QM9978 strain reveals a distal chromosome translocation to be responsible for loss of vib1 expression and loss of cellulase induction. Biotechnology for Biofuels, 2017, 10, 209.	6.2	43
11	A Network of Paralogous Stress Response Transcription Factors in the Human Pathogen Candida glabrata. Frontiers in Microbiology, 2016, 7, 645.	3.5	31
12	Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype. BMC Genomics, 2015, 16, 326.	2.8	31
13	Kinetic transcriptome analysis reveals an essentially intact induction system in a cellulase hyper-producer Trichoderma reesei strain. Biotechnology for Biofuels, 2014, 7, 173.	6.2	7
14	bPeaks: a bioinformatics tool to detect transcription factor binding sites from ChIPseq data in yeasts and other organisms with small genomes. Yeast, 2014, 31, 375-391.	1.7	23
15	B16 Mitogen And Stress-activated Kinase-1 Deficiency And Transcriptional Dysregulation In Huntington's Disease. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, A14-A14.	1.9	0
16	Comparative transcriptomics reveals different strategies of Trichodermamycoparasitism. BMC Genomics, 2013, 14, 121.	2.8	260
17	Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nature Communications, 2013, 4, 2091.	12.8	113
18	A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Briefings in Bioinformatics, 2013, 14, 671-683.	6.5	1,064

#	Article	IF	CITATIONS
19	New Partners in Regulation of Gene Expression: The Enhancer of Trithorax and Polycomb Corto Interacts with Methylated Ribosomal Protein L12 Via Its Chromodomain. PLoS Genetics, 2012, 8, e1003006.	3.5	18
20	Eoulsan: a cloud computing-based framework facilitating high throughput sequencing analyses. Bioinformatics, 2012, 28, 1542-1543.	4.1	135
21	RNA sequencing revealed novel actors of the acquisition of drug resistance in Candida albicans. BMC Genomics, 2012, 13, 396.	2.8	30
22	Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 2011, 12, R40.	8.8	594
23	The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics, 2011, 12, 269.	2.8	180
24	Dok4 is involved in Schwann cell myelination and axonal interaction in vitro. Glia, 2011, 59, 351-362.	4.9	11
25	Differential Regulation of the Cellulase Transcription Factors XYR1, ACE2, and ACE1 in Trichoderma reesei Strains Producing High and Low Levels of Cellulase. Eukaryotic Cell, 2011, 10, 262-271.	3.4	136
26	Teolenn: an efficient and customizable workflow to design high-quality probes for microarray experiments. Nucleic Acids Research, 2010, 38, e117-e117.	14.5	23
27	Tracking the roots of cellulase hyperproduction by the fungus <i>Trichoderma reesei</i> using massively parallel DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16151-16156.	7.1	190
28	Selection of oligonucleotides for whole-genome microarrays with semi-automatic update. Bioinformatics, 2009, 25, 128-129.	4.1	48
29	An evaluation of custom microarray applications: the oligonucleotide design challenge. Nucleic Acids Research, 2009, 37, 1726-1739.	14.5	41
30	Novel features of boundary cap cells revealed by the analysis of newly identified molecular markers. Glia, 2009, 57, 1450-1457.	4.9	55
31	Genome-Wide Transcriptome Analyses of Silicon Metabolism in Phaeodactylum tricornutum Reveal the Multilevel Regulation of Silicic Acid Transporters. PLoS ONE, 2009, 4, e7458.	2.5	101
32	Identification of Phox2b-regulated genes by expression profiling of cranial motoneuron precursors. Neural Development, 2008, 3, 14.	2.4	16
33	Yeast Mitochondrial Biogenesis: A Role for the PUF RNA-Binding Protein Puf3p in mRNA Localization. PLoS ONE, 2008, 3, e2293.	2.5	208
34	The Central Role of PDR1 in the Foundation of Yeast Drug Resistance. Journal of Biological Chemistry, 2007, 282, 5063-5074.	3.4	64
35	Cross-Species Comparison Using Expression Data. , 2007, , 147-159.		1
36	Goulphar: rapid access and expertise for standard two-color microarray normalization methods. BMC Bioinformatics, 2006, 7, 467.	2.6	58

#	Article	IF	CITATIONS
37	Role of heat-shock factor 2 in cerebral cortex formation and as a regulatorof p35 expression. Genes and Development, 2006, 20, 836-847.	5.9	85
38	Doelan: a solution for quality control monitoring of microarray production. Bioinformatics, 2005, 21, 4194-4195.	4.1	1
39	yMGV: a cross-species expression data mining tool. Nucleic Acids Research, 2004, 32, 323D-325.	14.5	6
40	Delineation of the conserved functional properties of D1A, D1B and D1C dopamine receptor subtypes in vertebrates. Biology of the Cell, 2004, 96, 383-394.	2.0	10
41	Dopamine receptors for every species: Gene duplications and functional diversification in Craniates. Journal of Structural and Functional Genomics, 2003, 3, 161-176.	1.2	46
42	Evolution and cell biology of dopamine receptors in vertebrates. Biology of the Cell, 2003, 95, 489-502.	2.0	159
43	yMGV: helping biologists with yeast microarray data mining. Nucleic Acids Research, 2002, 30, 76-79.	14.5	27
44	New Insights into the Pleiotropic Drug Resistance Network from Genome-Wide Characterization of the YRR1 Transcription Factor Regulation System. Molecular and Cellular Biology, 2002, 22, 2642-2649.	2.3	95
45	Ammonia Pulses and Metabolic Oscillations Guide Yeast Colony Development. Molecular Biology of the Cell, 2002, 13, 3901-3914.	2.1	131
46	Autocrine activation of adenosine A1 receptors blocks D1A but not D1B dopamine receptor desensitization. Journal of Neurochemistry, 2002, 82, 1549-1552.	3.9	19
47	Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8606-8611.	7.1	419